精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=(x2+ax+b)ex+1的大致图象如图所示,则a、b的值可能是(  )
A.a=-1,b=2B.a=3,b=-2C.a=4,b=4D.a=-1,b=-2

分析 根据得f(0)=b+1<0,排除A、C,利用导数求得函数的极小值点大于零,排除B,可得答案.

解答 解:结合图象,令x=0,可得f(0)=b+1<0,∴b<-1,故排除A、C.
令 f′(x)=(2x+a)ex=0,求得x=-$\frac{a}{2}$,可得-$\frac{a}{2}$是函数的极小值点,结合图象,-$\frac{a}{2}$>0,∴a<0,故排除B,
故选:D.

点评 本题主要考查函数的图象特征,利用导数研究函数的极值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.在下列命题中:
①若$\overrightarrow a$、$\overrightarrow b$共线,则表示$\overrightarrow a$、$\overrightarrow b$的有向线段所在的直线平行;
②若表示$\overrightarrow a$、$\overrightarrow b$的有向线段所在直线是异面直线,则$\overrightarrow a$、$\overrightarrow b$一定不共面;
③若$\overrightarrow a$、$\overrightarrow b$、$\overrightarrow c$三向量两两共面,则$\overrightarrow a$、$\overrightarrow b$、$\overrightarrow c$三向量一定也共面;
④已知三向量$\overrightarrow a$、$\overrightarrow b$、$\overrightarrow c$不共面,则空间任意一个向量$\overrightarrow p$总可以唯一表示为$\overrightarrow p=x\overrightarrow a+y\overrightarrow b+z\overrightarrow c$,x,y,z∈R.其中正确命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知实数x,y满足$\left\{\begin{array}{l}{x-2y+1≥0}\\{x-y-1≤0}\\{x+y+1≥0}\end{array}\right.$,则z=$\frac{3x+y+3}{x+1}$的取值范围是[2,3.5].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若?x∈R,函数f(x)=2mx2-2(4-m)x+1与g(x)=mx的值至少有一个为正数,则实数m的取值范围为(  )
A.(0,4]B.(0,8)C.(2,5)D.(-∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若f′(x0)=6,则$\underset{lim}{k→0}$$\frac{f({x}_{0}-k)-f({x}_{0})}{2k}$等于(  )
A.-3B.3C.-2D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某厂生产的零件外直径ξ~N(10,0.09),今从该厂上、下午生产的零件中各随机取出一个,测得其外直径分别为11cm和9.3cm,则可认为(  )
A.上午生产情况正常,下午生产情况异常
B.上午生产情况异常,下午生产情况正常
C.上、下午生产情况均正常
D.上、下午生产情况均异常

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设对于任意实数x,不等式|x+7|≥m-1恒成立,且m的最大值为p.
(Ⅰ)求p的值;
(Ⅱ)若a,b,c∈R,且a+b+c=p,求证:${a^2}+{b^2}+{c^2}≥\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f'(x)是函数f(x)的导函数,且满足:①$\frac{f(x)-f'(x)}{x-1}>0$;
②exf(1-x)-e-xf(1+x)=0,设 a=ef(1),b=f(2),c=e3f(-1).
则a,b,c的大小顺序是a>b>c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}满足:a1=1,${a_{n+1}}={a_n}+\frac{{{a_n}^2}}{{{{(n+1)}^2}}}$(n∈N*
(Ⅰ)求证:an≥1;
(Ⅱ)证明:$\frac{{a}_{n+1}}{{a}_{n}}$≥1+$\frac{1}{(n+1)^{2}}$
(Ⅲ)求证:$\frac{2(n+1)}{n+3}$<an+1<n+1.

查看答案和解析>>

同步练习册答案