精英家教网 > 高中数学 > 题目详情
设f(x)=
axx+a
(a≠0),令a1=1,an+1=f(an),又令bn=anan+1,n∈N*
(1)求数列{an}的通项公式;
(2)求数列{bn}的前n项的和.
分析:(1)根据题设条件,先求出a1,a2,a3,a4,然后观察它们的规律,猜想出an,再用数学归纳法进行证明.
(2)由bn=anan+1=
a
a+n-1
a
a+n
=a2(
1
a+n-1
-
1
a+n
)
,可用裂项法进行求和.
解答:解:(1)a1=1,a2=f(1)=
a
1+a
a3=f(
a
a+1
) =
a
a+1
a
a+1
+a
=
a
a+2
a4=f(
a
a+2
) =
a
a+2
a
a+2
+a
=
a
a+3
,由此猜想an=
a
a+n-1
.下面用数学归纳法证明这个猜想.
①当n=1时,a1=
a
a+1-1
=1
,等式成立.
②假设当n=k时,等式成立.即ak=
a
a+k-1

当n=k+1时,ak+1=f(ak) =
a
a+k-1
a
a+k-1
+a
=
a
a+k
,等式成立.由①②知an=
a
a+n-1

(2)∵bn=anan+1=
a
a+n-1
a
a+n
=a2(
1
a+n-1
-
1
a+n
)

数列{bn}的前n项的和=b1+b2+…+bn=a2(
1
a
-
1
a+1
) +a2(
1
a+1
-
1
a+2
) +…+a2(
1
a+n-1
-
1
a+n
)

=a2(
1
a
-
1
a+n
)
点评:本题考查数列通项公式的求法和数列求和,解题时要注意数学归纳法和裂项求和法的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=log
1
2
(
1-ax
x-1
)
为奇函数,a为常数,
(Ⅰ)求a的值;
(Ⅱ)证明:f(x)在(1,+∞)内单调递增;
(Ⅲ)若对于[3,4]上的每一个x的值,不等式f(x)>(
1
2
)x
+m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=
ax
x+a
(a≠0),令a1=1,an+1=f(an),又bn=an•an+1,n∈N*
(1)判断数列{
1
an
}是等差数列还是等比数列并证明;
(2)求数列{an}的通项公式;
(3)求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•徐汇区一模)设函数y=f(x)与函数y=f(f(x))的定义域交集为D.若对任意的x∈D,都有f(f(x))=x,则称函数f(x)是集合M的元素.
(1)判断函数f(x)=-x+1和g(x)=2x-1是否是集合M的元素,并说明理由;
(2)设函数f(x)=log2(1-2x),试求函数f(x)的反函数f-1(x),并证明f-1(x)∈M;
(3)若f(X)=
axx+b
∈M
(a,b为常数且a>0),求使f(x)<1成立的x的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设f(x)=
ax
x+a
(a≠0),令a1=1,an+1=f(an),又bn=an•an+1,n∈N*
(1)判断数列{
1
an
}是等差数列还是等比数列并证明;
(2)求数列{an}的通项公式;
(3)求数列{bn}的前n项和.

查看答案和解析>>

同步练习册答案