精英家教网 > 高中数学 > 题目详情

已知函数.

(1)求最大值?

(2)若存在实数使成立,求实数的取值范围。

 

【答案】

(1)最大值是3.(2)实数的取值范围

【解析】

试题分析:(1)由柯西不等式有

当且仅当,即时,等号成立。所以,最大值的是3.

(2)依题意,只须,由(1)得,,解得。所以,实数的取值范围

考点:本题主要考查柯西不等式的应用,不等式恒成立问题。

点评:中档题,涉及不等式恒成立问题,往往应用“转化与化归思想”,将问题转化成求函数的最值问题,利用不等式或导数,求函数的最值。

 

练习册系列答案
相关习题

科目:高中数学 来源:2014届山东省临沂市高三9月月考理科数学试卷(解析版) 题型:解答题

已知函数

(1)求函数的定义域 ;

(2)若函数的最小值为,求实数的值.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年人教版高一(上)期中数学试卷(解析版) 题型:解答题

已知函数
(1)求f(x)的定义域和值域;
(2)证明函数在(0,+∞)上是减函数.

查看答案和解析>>

科目:高中数学 来源:2010年上海市奉贤区高考数学二模试卷(文科)(解析版) 题型:解答题

已知函数
(1)求出函数f(x)的对称中心;
(2)证明:函数f(x)在(-1,+∞)上为减函数;
(3)是否存在负数x,使得成立,若存在求出x;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2013届浙江省高二下期中数学试卷(解析版) 题型:解答题

已知函数

(1)求的定义域;

(2)判断函数的奇偶性,并予以证明;

(3)若,猜想之间的关系并证明.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年北京市高三入学测试数学卷 题型:解答题

(本小题满分12分)

已知函数 ,

  (1)求函数的定义域;(2)证明:是偶函数;

  (3)若,求的取值范围。

 

查看答案和解析>>

同步练习册答案