精英家教网 > 高中数学 > 题目详情
3.点P在直线a上,直线a在平面α内可记为(  )
A.P∈a,a?αB.P?a,a?αC.P?a,a∈αD.P∈a,a∈α

分析 根据线、面都是由点组成,借助于元素与集合和集合与集合的关系表示.

解答 解:点P在直线a上,直线a在平面α内可记为P∈a,a?α;
故选:A.

点评 本题考查了几何中,点与线、线与面的位置关系的表示;体现了符号语言的重要性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.极坐标系与直角坐标系xOy取相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知l是过定点P(2,2)且倾斜角为α的直线,曲线C的极坐标方程为ρ2(1+8sin2θ)=9.
(1)写出直线l的参数方程,并将曲线C化为直角坐标方程;
(2)若曲线C的横坐标不变,纵坐标扩大为原来的3倍,得到曲线C′,曲线C′与直线l交于A,B两点,求|PA|+|PB|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在△ABC中,AB=5,BC=3,∠ABC=120°,以点B为圆心,线段BC的长为半径的半圆交AB所在直线于点E、F,交线段AC于点D,则线段AD的长为$\frac{16}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若函数f(x+1)的定义域为(-1,2),则f($\frac{1}{x}$)的定义域为($\frac{1}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.椭圆$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{2}$=1与双曲线$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{{b}^{2}}$=1有公共的焦点F1,F2,P是两曲线的一个交点,则cos∠F1PF2=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知某几何体的三视图如图所示,其中俯视图中圆的直径为4,该几何体的体积为
V1.直径为4的球的体积为V2,则V1:V2=1:2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知直线l经过点P(-1,1),它被两条平行线l1:x+2y-5=0和l2:x+2y-3=0所截得的线段M1M2的中点M在直线l3:x-y-1=0上,试求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设a>0,b>0,对任意的实数x>1,有ax+$\frac{x}{x-1}$>b成立,试比较$\sqrt{a}$+1和$\sqrt{b}$的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.关于函数f(x)=cos(2x-$\frac{π}{3}$)+cos(2x+$\frac{π}{6}$)有下列命题:
①y=f(x)的最大值为$\sqrt{2}$;
②点($\frac{π}{8}$,0)是y=f(x)的图象的一个对称中心;
③y=f(x)在区间($\frac{π}{24}$,$\frac{13π}{24}$)上单调递减;
④将函数y=$\sqrt{2}$cos2x的图象向左平移$\frac{π}{24}$个单位后,将与已知函数f(x)的图象重合.
其中正确命题的序号是①③.(把你认为正确的命题的序号都填上)

查看答案和解析>>

同步练习册答案