精英家教网 > 高中数学 > 题目详情
本题(1)、(2)、(3)三个选答题,每小题7分,任选2题作答,满分14分,如果多做,则按所做的前两题计分.
(I)选修4-2:矩阵与变换
已知矩阵A=
01
a0
,矩阵B=
02
b0
,直线l1
:x-y+4=0经矩阵A所对应的变换得直线l2,直线l2又经矩阵B所对应的变换得到直线l3:x+y+4=0,求直线l2的方程.
(II)选修4-4:坐标系与参数方程
求直线
x=-1+2t
y=-2t
被曲线
x=1+4cosθ
y=-1+4sinθ
截得的弦长.
(III)选修4-5:不等式选讲
若存在实数x满足不等式|x-4|+|x-3|<a,求实数a的取值范围.
分析:(I)由BA=
02
b0
01
a0
=
2a0
0b
,得l1变换到l3的变换公式
x′=2ax
y′=by
从而2ax+by+4=0即直线l1:x-y+4=0,列出关于a,b的方程即可求得a,b即可.
(II)先得出直线
x=-1+2t
y=-2t
的普通方程为x+y+1=0及曲线
x=1+4cosθ
y=-1+4sinθ
即圆心为(1,-1)半径为4的圆  利用圆心(1,-1)到直线的距离即可求得直线被曲线截得的弦长;
(III)先利用绝对值不等式的性质得出y=|x-4|+|x-3|的最小值为1再根据原不等式有实数解,即可求得a的取值范围.
解答:解:(1)(本小题满分7分)
解:BA=
02
b0
01
a0
=
2a0
0b

得l1变换到l3的变换公式
x′=2ax
y′=by
,…(2分)则2ax+by+4=0即直线l1:x-y+4=0,
则有
2a=1
b=-1
解得a=
1
2
,b=-1…(4分)
此时B=
02
-10
,同理可得l2的方程为2y-x+4=0
即x-2y-4=0.…(7分)
(2)(本小题满分7分)
解:直线
x=-1+2t
y=-2t
的普通方程为x+y+1=0…(2分)
曲线
x=1+4cosθ
y=-1+4sinθ
即圆心为(1,-1)半径为4的圆  …(4分)
则圆心(1,-1)到直线x+y+1=0的距离d=
|1-1+1|
12+12
=
2
2
…(5分)
设直线被曲线截得的弦长为t,则t=2
42-(
2
2
)
2
=
62

∴直线被曲线截得的弦长为
62
…(7分)
(3)(本小题满分7分)
解:∵|x-4|+|x-3|≥|(x-4)-(x-3)|…(2分)∴y=|x-4|+|x-3|的最小值为1   …(4分)
又因为原不等式有实数解,所以a的取值范围是(1,+∞).…(7分)
点评:本小题主要考查几种特殊的矩阵变换、圆的参数方程、不绝对值不等式的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

本题(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.
(1)选修4-2:矩阵与变换
已知矩阵A=
33
cd
,若矩阵A属于特征值6的一个特征向量为
α
=
1
1
,属于特征值1的一个特征向量为
β
=
&-2

(Ⅰ)求矩阵A;
(Ⅱ)判断矩阵A是否可逆,若可逆求出其逆矩阵A-1
(2)选修4-4:坐标系与参数方程
已知直线的极坐标方程为ρsin(θ+
π
4
)=
2
2
,圆M的参数方程为
x=2cosθ
y=-2+2sinθ
(其中θ为参数).
(Ⅰ)将直线的极坐标方程化为直角坐标方程;
(Ⅱ)求圆M上的点到直线的距离的最小值.
(3)选修4-5:不等式选讲,设函数f(x)=|x-1|+|x-a|;
(Ⅰ)若a=-1,解不等式f(x)≥3;
(Ⅱ)如果关于x的不等式f(x)≤2有解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•漳州模拟)本题(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
已知矩阵A=
a2
1b
有一个属于特征值1的特征向量
α
=
2
-1

(Ⅰ) 求矩阵A;
(Ⅱ) 矩阵B=
1-1
01
,点O(0,0),M(2,-1),N(0,2),求△OMN在矩阵AB的对应变换作用下所得到的△O'M'N'的面积.
(2)选修4-4:坐标系与参数方程
已知直角坐标系xOy中,直线l的参数方程为
x=t-3 
y=
3
(t为参数).以直角坐标系xOy中的原点O为 极点,x轴的非负半轴为极轴,圆C的极坐标方程为ρ2-4ρcosθ+3=0,
(Ⅰ) 求l的普通方程及C的直角坐标方程;
(Ⅱ) P为圆C上的点,求P到l距离的取值范围.
(3)选修4-5:不等式选讲
已知关于x的不等式:|x-1|+|x+2|≥a2+2|a|-5对任意x∈R恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011届福建省四地六校联考高三上学期第二次月考理科数学卷 题型:解答题

(本小题满分14分)本题(1)、(2)、(3)三个选答题,每小题7分,任选2题作答,满分14分,如果多做,则按所做的前两题计分。作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中。
(1)(本小题满分7分) 选修4-2:矩阵与变换
已知,若所对应的变换把直线变换为自身,求实数,并求的逆矩阵。
(2)(本题满分7分)选修4-4:坐标系与参数方程
已知直线的参数方程:为参数)和圆的极坐标方程:
①将直线的参数方程化为普通方程,圆的极坐标方程化为直角坐标方程;
②判断直线和圆的位置关系。
(3)(本题满分7分)选修4-5:不等式选讲
已知函数
①解不等式
②证明:对任意,不等式成立.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省四地六校联考高三上学期第二次月考理科数学卷 题型:解答题

(本小题满分14分)本题(1)、(2)、(3)三个选答题,每小题7分,任选2题作答,满分14分,如果多做,则按所做的前两题计分。作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中。

(1)(本小题满分7分) 选修4-2:矩阵与变换

已知,若所对应的变换把直线变换为自身,求实数,并求的逆矩阵。

 

(2)(本题满分7分)选修4-4:坐标系与参数方程

 已知直线的参数方程:为参数)和圆的极坐标方程:

①将直线的参数方程化为普通方程,圆的极坐标方程化为直角坐标方程;

②判断直线和圆的位置关系。

 

(3)(本题满分7分)选修4-5:不等式选讲

 已知函数

①解不等式

②证明:对任意,不等式成立.

 

 

查看答案和解析>>

同步练习册答案