精英家教网 > 高中数学 > 题目详情
设函数f(x)=1-e-x,函数(其中a∈R,e是自然对数的底数).
(Ⅰ)当a=0时,求函数h(x)=f'(x)•g(x)的极值;
(Ⅱ)若f(x)≤g(x)在[0,+∞)上恒成立,求实数a的取值范围;
(Ⅲ)设n∈N*,求证:(其中e是自然对数的底数).
【答案】分析:(Ⅰ)由f(x)=1-e-x,知f′(x)=-e-x•(-1)=e-x,故函数h(x)=f′(x)•g(x)=xe-x,h′(x)=(1-x)•e-x,由此能求出函数h(x)=f'(x)•g(x)的极值.
(Ⅱ)由题1-e-x在[0,+∞)上恒成立,由x≥0,1-e-x∈[0,1),知,分类讨论能够得到不等式f(x)≤g(x)在[0,+∞)上恒成立时,实数a的取值范围.
(Ⅲ)由(Ⅱ)知,当a=时,则,故,由此能证明
解答:解:(Ⅰ)∵f(x)=1-e-x,∴f′(x)=-e-x•(-1)=e-x
函数h(x)=f′(x)•g(x)=xe-x
∴h′(x)=(1-x)•e-x,当x<1时,h′(x)>0;当x>1时,h′(x)<0,
故该函数在(-∞,1)上单调递增,在(1,+∞)上单调递减.
∴函数h(x)在x=1处取得极大值h(1)=.(4分)
(Ⅱ)由题1-e-x在[0,+∞)上恒成立,
∵x≥0,1-e-x∈[0,1),∴
若x=0,则a∈R,若x>0,则a>-恒成立,则a≥0.
不等式恒成立等价于(ax+1)(1-e-x)-x≤0在[0,+∞)上恒成立,(6分)
令μ(x)=(ax+1)(1-e-x),则μ′(x)=a(1-e-x)+(ax+1)e-x-1,
又令v(x)=a(1-e-x)+(ax+1)e-x-1,
则v′(x)=e-x(2a-ax-1),∵x≥0,a≥0.
①当a=0时,v′(x)=-e-x<0,
则v(x)在[0,+∞)上单调递减,∴v(x)=μ′(x)≤v(0)=0,
∴μ(x)在[0,+∞)上单减,∴μ(x)≤μ(0)=0,
即f(x)≤g(x)在[0,+∞)上恒成立;(7分)
②当a≥0时,
ⅰ)若2a-1≤0,即0<a时,v′(x)≤0,则v(x)在[0,+∞)上单调递减,
∴v(x)=μ′(x)≤v(0)=0,
∴μ(x)在[0,+∞)上单调递减,
∴μ(x)≤μ(0)=0,
此时f(x)≤g(x)在[0,+∞)上恒成立;(8分)
ⅱ)若2a-1>0,即a时,若0<x<时,
v′(x)>0,则v(x)在(0,)上单调递增,
∴v(x)=μ′(x)>v(0)=0,∴μ(x)在(0,)上也单调递增,
∴μ(x)>μ(0)=0,即f(x)>g(x),不满足条件.(9分)
综上,不等式f(x)≤g(x)在[0,+∞)上恒成立时,实数a的取值范围是[0,].(10分)
(Ⅲ)由(Ⅱ)知,当a=时,则

当x∈[0,2)时,,∴
,则x=
,∴
,(12分)
又由(Ⅰ)得h(x)≤h(1),即,当x>0时,,∴lnx≤x-1,
ln(n!)=ln2+ln3+…+lnn≤1+2+…+(n-1)=
综上得≤ln(n!)≤
.(14分)
点评:本题考查函数极值的求法,求实数的取值范围,证明不等式.考查数列、不等式知识,考查化归与转化、分类与整合的数学思想,培养学生的抽象概括能力、推理论证能力、运算求解能力和创新意识.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=|1-
1x
|(x>0),证明:当0<a<b,且f(a)=f(b)时,ab>1.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1-
1-x
x
(x<0)
a+x2(x≥0)
,要使f(x)在(-∞,+∞)内连续,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1             (x≤
3
)
4-x2
(
3
<x<2)
0              (x≥2)
,则
2010
-1
f(x)dx的值为
π
3
+
2+
3
2
π
3
+
2+
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1-|x-1|,x<2
1
2
f(x-2),x≥2
,则函数F(x)=xf(x)-1的零点的个数为
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1,x>0
0,x=0
-1,x<0
,g(x)=x2f(x-1),则函数g(x)的递减区间是(  )

查看答案和解析>>

同步练习册答案