精英家教网 > 高中数学 > 题目详情

【题目】定义在(﹣∞,0)∪(0,+∞)上的函数f(x),总有f(mn)=f(m)f(n),且f(x)>0,当x>1时,f(x)>1.
(1)求f(1),f(﹣1)的值;
(2)判断函数的奇偶性,并证明;
(3)判断函数在(0,+∞)上的单调性,并证明.

【答案】
(1)解:令m=n=1,则有f(1)=f(1)f(1),

又f(x)>0,则f(1)=1

令m=n=﹣1,则有f(1)=f(﹣1)f(﹣1),

又f(1)=1,f(x)>0,则f(﹣1)=1


(2)解:证明:定义域为(﹣∞,0)∪(0,+∞),

令m=x,n=﹣1,则有f(﹣x)=f(x)f(﹣1)=f(x),

所以f(x)为偶函数


(3)解:证明:x1,x2∈(0,+∞),且x1>x2

令mn=x1,m=x2,则

所以

又f(x)>0, ,由x1>x2>0,则

而当x>1时,f(x)>1,

所以 ,即

又f(x)>0,所以f(x1)>f(x2),

所以函数f(x)在(0,+∞)上是增函数


【解析】(1)令m=n=1,m=n=﹣1,求f(1),f(﹣1)的值;(2)令m=x,n=﹣1,判断函数的奇偶性;(3)设x1>x2 , 由已知得出 ,即可判断出函数f(x)在R上单调递增.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】椭圆C焦点在y轴上,离心率为 ,上焦点到上顶点距离为2﹣
(1)求椭圆C的标准方程;
(2)直线l与椭圆C交与P,Q两点,O为坐标原点,△OPQ的面积SOPQ=1,则| |2+| |2是否为定值,若是求出定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求函数f(x)=﹣x2+4x﹣6,x∈[0,5]的值域(
A.[﹣6,﹣2]
B.[﹣11,﹣2]
C.[﹣11,﹣6]
D.[﹣11,﹣1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数)的图象在处有公切线.

(Ⅰ)求实数的值;

(Ⅱ)求函数的极大值和极小值;

(Ⅲ)关于x的方程由几个不同的实数解?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】截直线所得弦长为2,则实数__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题:
(1)随机误差e是衡量预报精确度的一个量,它满足E(e)=0
(2)残差平方和越小的模型,拟合的效果越好;
(3)用相关指数R2来刻画回归的效果时,R2的值越小,说明模型拟合的效果越好;
(4)直线y=bx+a和各点(x1 , y1),(x2 , y2),…,(xn , yn)的偏差 是该坐标平面上所有直线与这些点的偏差中最小的直线.
其中真命题的个数( )
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据以往的经验,某工程施工期间的将数量X(单位:mm)对工期的影响如下表:

降水量X

X<300

300≤X<700

700≤X<900

X≥900

工期延误天数Y

0

2

6

10

历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9,求:
(1)工期延误天数Y的均值与方差;
(2)在降水量X至少是300的条件下,工期延误不超过6天的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知y=f(x)是二次函数,方程f(x)=0有两相等实根,且f′(x)=2x+2
(1)求f(x)的解析式.
(2)求函数y=f(x)与y=﹣x2﹣4x+1所围成的图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=2,前n项和为Sn , 若Sn=2(an﹣1),(n∈N+).
(1)求数列{an}的通项公式;
(2)设bn=(log2an+12﹣(log2an2 , 若cn=anbn , 求{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案