【题目】椭圆C焦点在y轴上,离心率为 ,上焦点到上顶点距离为2﹣ .
(1)求椭圆C的标准方程;
(2)直线l与椭圆C交与P,Q两点,O为坐标原点,△OPQ的面积S△OPQ=1,则| |2+| |2是否为定值,若是求出定值;若不是,说明理由.
【答案】
(1)解:由题意可得 ,
解得 ,
可得b2=a2﹣c2=1,
即有椭圆C的标准方程为: ;
(2)解:设P(x1,y1),Q(x2,y2)
①当l斜率不存在时,P,Q两点关于x轴对称,
S△OPQ=|x1||y1|=1,
又 ,解得 ,
| |2+| |2=2(x12+y12)=2×( +2)=5;
②当直线l的斜率存在时,设直线l的方程为y=kx+m,
由题意知m≠0,将其代入 ,得
(k2+4)x2+2kmx+m2﹣4=0,
即有 ,
则 ,O到PQ距离 ,
则 ,
解得k2+4=2m2,满足△>0,
则 ,
即有| |2+| |2=(x12+y12)(x22+y22)
=
= =﹣3+8=5,
综上可得| |2+| |2为定值5.
【解析】(1)运用椭圆的离心率公式和两点的距离公式,及a,b,c的关系,解得a,b,进而得到椭圆方程;(2)设P(x1 , y1),Q(x2 , y2),讨论直线l的斜率不存在和存在,设出直线方程,代入椭圆方程,运用韦达定理和判别式大于0,结合三角形的面积公式,点到直线的距离公式和弦长公式,化简整理,即可得到所求和为定值5.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,直线的参数方程为(为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的方程为.
(1)求圆的直角坐标方程;
(2)设圆与直线交于点,若点的坐标为,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】广东某市一玩具厂生产一种玩具深受大家喜欢,经市场调查该商品每月的销售量(单位:千件)与销售价格(单位:元/件)满足关系式,其中, 为常数.已知销售价格为4元/件时,每日可售出玩具21千件.
(1)求的值;
(2)假设该厂生产这种玩具的成本、员工工资等所有开销折合为每件2元(只考虑销售出的件数),试确定销售价格的值,使该厂每日销售这种玩具所获得的利润最大.(保留1位小数)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱锥中, 平面,底面是菱形, , , . 为与的交点, 为棱上一点,
(1)证明:平面⊥平面;
(2)若三棱锥的体积为,
求证: ∥平面.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,直线的参数方程是(为参数),以为极点, 轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为,且直线与曲线交于两点.
(Ⅰ)求曲线的直角坐标方程及直线恒过的定点的坐标;
(Ⅱ)在(Ⅰ)的条件下,若,求直线的普通方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,点是椭圆的一个顶点, 的长轴是圆的直径. 是过点且互相垂直的两条直线,其中交圆于两点交椭圆于另一点.
(1)求椭圆的方程;
(2)求面积取最大值时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题满分14分)如图,在四棱锥中, 平面,底面是菱形, , 为与的交点, 为上任意一点.
(1)证明:平面平面;
(2)若平面,并且二面角的大小为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,关于正方体ABCD﹣A1B1C1D1 , 下面结论错误的是( )
A.BD⊥平面ACC1A1
B.AC⊥BD
C.A1B∥平面CDD1C1
D.该正方体的外接球和内接球的半径之比为2:1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在(﹣∞,0)∪(0,+∞)上的函数f(x),总有f(mn)=f(m)f(n),且f(x)>0,当x>1时,f(x)>1.
(1)求f(1),f(﹣1)的值;
(2)判断函数的奇偶性,并证明;
(3)判断函数在(0,+∞)上的单调性,并证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com