精英家教网 > 高中数学 > 题目详情
5.已知△ABC的三边是连续的三个正整数,且最大角是最小角的2倍,求△ABC的面积.

分析 由题意设a=n、b=n+1、c=n+2(n∈N+),由边角关系可得C=2A,由正弦定理和余弦定理列出方程,求出n、三边、cosA的值,由平方关系求出sinA,代入三角形面积公式即可求出△ABC的面积.

解答 解:由题意设a=n、b=n+1、c=n+2(n∈N+),
∵最大角是最小角的2倍,∴C=2A,
由正弦定理得$\frac{a}{sinA}=\frac{c}{sinC}$,则$\frac{n}{sinA}=\frac{n+2}{sin2A}$,
∴$\frac{n}{sinA}=\frac{n+2}{2sinAcosA}$,得cosA=$\frac{n+2}{2n}$,
由余弦定理得,cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{{(n+1)}^{2}+{(n+2)}^{2}-{n}^{2}}{2(n+1)(n+2)}$,
∴$\frac{{(n+1)}^{2}+{(n+2)}^{2}-{n}^{2}}{2(n+1)(n+2)}$=$\frac{n+2}{2n}$,
化简得,n=4,
∴a=4、b=5、c=6,cosA=$\frac{3}{4}$,
又0<A<π,∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{\sqrt{7}}{4}$,
∴△ABC的面积S=$\frac{1}{2}bcsinA$=$\frac{1}{2}×5×6×\frac{\sqrt{7}}{4}$=$\frac{15\sqrt{7}}{4}$.

点评 本题考查正弦定理和余弦定理,边角关系,三角形的面积公式的综合应用,以及方程思想,考查化简、计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.如果椭圆$\frac{y^2}{36}$+$\frac{x^2}{9}$=1的某条弦被点(2,4)平分,则这条弦所在的直线方程是2x+y-8=0(请写出一般式方程)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设函数f(x)是周期为6的偶函数,且当x∈[0,3]时f(x)=3x,则f(2015)=(  )
A.6B.3C.0D.-6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在四棱锥A-EFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF的中点.
(Ⅰ) 求证:AO⊥BE;
(Ⅱ) 求二面角F-AE-B的余弦值;
(Ⅲ) 若直线CA与平面BEA所成的角的正弦值为$\frac{{2\sqrt{6}}}{5}$,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知抛物线C:x2=2py(p>0)的焦点为F,直线2x-y+2=0交抛物线C于A、B两点,P是线段AB的中点,过P作x轴的垂线交抛物线C于点Q.
(Ⅰ)D是抛物线C上的动点,点E(-1,3),若直线AB过焦点F,求|DF|+|DE|的最小值;
(Ⅱ)是否存在实数p,使|2$\overrightarrow{QA}$+$\overrightarrow{QB}$|=|2$\overrightarrow{QA}$-$\overrightarrow{QB}$|?若存在,求出p的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知m∈R,复数z=(m-1)+mi,设命题p:复数z在平面内对应的点位于第二象限;命题q:|z|≤$\sqrt{5}$.
(1)若¬p为真命题,求m的取值范围;
(2)若“p∨q”为真,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知向量$\overrightarrow{a}$=(cos$\frac{3x}{2}$,sin$\frac{3x}{2}$),$\overrightarrow{b}$=(cos$\frac{x}{2}$,-sin$\frac{x}{2}$),且x∈[-$\frac{π}{6}$,$\frac{π}{4}$],记f(x)=$\frac{3}{2}$|$\overrightarrow{a}$+$\overrightarrow{b}$|-$\overrightarrow{a}$•$\overrightarrow{b}$,则f(x)的最小值为(  )
A.2B.$\frac{17}{8}$C.$\frac{{3\sqrt{3}-1}}{2}$D.$\frac{{3\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知向量$\overrightarrow a$=(2,3),$\overrightarrow b$=(cosθ,sinθ)且$\overrightarrow a$⊥$\overrightarrow b$,则tanθ=(  )
A.$\frac{3}{2}$B.-$\frac{3}{2}$C.$\frac{2}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知等差数列{an}的前n项和Sn满足S3=0,S5=-5,数列{$\frac{1}{{a}_{2n-1}{a}_{2n+1}}$}的前2016项的和为-$\frac{2016}{4031}$.

查看答案和解析>>

同步练习册答案