分析 判断点(2,4)在椭圆内,设这条弦的两端点为A(x1,y1),B(x2,y2),斜率为k,代入椭圆方程,作差分解,运用中点坐标公式和直线的斜率公式,可得k=-2,再由点斜式方程,即可得到所求直线的方程.
解答 解:由(2,4)代入椭圆方程,可得$\frac{16}{36}$+$\frac{4}{9}$=$\frac{8}{9}$<1,
即点(2,4)在椭圆内,
设这条弦的两端点为A(x1,y1),B(x2,y2),斜率为k,
则$\frac{y_1^2}{36}+\frac{x_1^2}{9}=1,\frac{y_2^2}{36}+\frac{x_2^2}{9}=1$,
两式相减可得$\frac{({y}_{1}-{y}_{2})({y}_{1}+{y}_{2})}{36}$+$\frac{({x}_{1}-{x}_{2})({x}_{1}+{x}_{2})}{9}$=0,
则k=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=-$\frac{4({x}_{1}+{x}_{2})}{{y}_{1}+{y}_{2}}$,
又弦中点为(2,4),可得x1+x2=4,y1+y2=8,
故k=-2,
故这条弦所在的直线方程y-4=-2(x-2),
整理得2x+y-8=0.
故答案为:2x+y-8=0.
点评 本题考查直线的方程的求法,注意运用点差法和中点坐标公式、直线的斜率公式,考查化简整理的运算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7}{16}$ | B. | $\frac{25}{16}$ | C. | -$\frac{7}{16}$ | D. | -$\frac{25}{16}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com