分析 利用正弦定理,三角函数恒等变换的应用化简已知等式可得sinA=4sinAcosB,又sinA≠0,从而可求cosB,进而可求sinB,利用余弦定理,基本不等式可求ac的最大值,进而利用三角形面积公式即可得解.
解答 解:根据b•cosC+c•cosB=4a•cosB,可得sinBcosC+sinCcosB=4sinAcosB,
∴sin(B+C)=sinA=4sinAcosB,又sinA≠0,
∴$cosB=\frac{1}{4},sinB=\sqrt{1-{{(\frac{1}{4})}^2}}=\frac{{\sqrt{15}}}{4}$,
∵${b^2}={a^2}+{c^2}-2accosB={a^2}+{c^2}-2ac×\frac{1}{4}$,
∴$16={a^2}+{c^2}-\frac{1}{2}ac≥2ac-\frac{1}{2}ac$,
∴$ac≤\frac{32}{3}$,当且仅当a=c时,等号成立,
${S_{△ABC}}=\frac{1}{2}acsinB≤\frac{1}{2}×\frac{32}{3}×\frac{{\sqrt{15}}}{4}=\frac{{4\sqrt{15}}}{3}$.
故答案为:$\frac{{4\sqrt{15}}}{3}$.
点评 本题主要考查了正弦定理,三角函数恒等变换的应用,余弦定理,基本不等式,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{3}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{8}{9}$ | B. | -$\frac{6}{7}$ | C. | $\frac{21}{16}$ | D. | $\frac{22}{31}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -4 | B. | 4或$-\frac{17}{2}$ | C. | -4或4 | D. | -4或4或-$\frac{17}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2014 | B. | 2015 | C. | 2016 | D. | 2017 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com