精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lnx,g(x)=
1
2
x2

(I)设函数F(x)=ag(x)-f(x)(a>0),若F(x)没有零点,求a的取值范围;
(II)若x1>x2>0,总有m[g(x1)-g(x2)]>x1f(x1)-x2f(x2)成立,求实数m的取值范围.
(I)F(x)=ag(x)-f(x)=
1
2
ax2-lnx,
F′(x)=ax-
1
x
=
ax2-1
x
   (x>0)
∴函数F(x)在(0,
1
a
)上为减函数,在(
1
a
,+∞)上为增函数
若F(x)没有零点,须且只须F(
1
a
)>0,
1
2a
+
1
2
lna>0,即
1
a
+lna>
0
设g(a)=
1
a
+lna
,∵g′(a)=
a-1
a2

∴g(a)在(0,1)而为减函数,在(1,+∞)上为增函数,而g(1)=1>0
∴g(a)>0,即当a>0时,
1
a
+lna>
0恒成立
故若F(x)没有零点,则a的取值范围为(0,+∞)
(II)若x1>x2>0,总有m[g(x1)-g(x2)]>x1f(x1)-x2f(x2)成立,
即若x1>x2>0,总有mg(x1)-x1f(x1)>mg(x2)-x2f(x2)成立,
即函数h(x)=mg(x)-xf(x)=
1
2
mx2-xlnx,在(0,+∞)上为增函数,
即h′(x)=mx-lnx-1≥0在(0,+∞)上恒成立
即m≥
lnx+1
x
在(0,+∞)上恒成立
设G(x)=
lnx+1
x
,则G′(x)=
-lnx
x2

∴G(x)在(0,1)上为增函数,在(1,+∞)上为减函数,
∴G(x)≤G(1)=1
∴m≥1
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案