精英家教网 > 高中数学 > 题目详情
在复平面内,若z=m2(1+i)-m(4+i)-6i所对应的点在第二象限,则实数m的取值范围是(  )
A.(0,3)B.(-∞,-2)C.(-2,0)D.(3,4)
∵z=m2(1+i)-m(4+i)-6i=(m2-4m)+(m2-m-6)i,
它所对应的点在第二象限,
m2-4m<0
m2-m-6>0

∴m>3或m<-2,
且0<m<4,
∴3<m<4
故选D.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在复平面内,若z=m2(1+i)-m(4+i)-6i所对应的点在第二象限,则实数m的取值范围是(  )
A、(0,3)B、(-∞,-2)C、(-2,0)D、(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

在复平面内,若复数z=(m2-4m)+(m2-m-6)i所对应的点在第二象限,则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z=(2+i)m2-
6m1-i
-2(1-i)

(Ⅰ)当实数m取什么值时,复数z是:①实数; ②虚数;③纯虚数;
(Ⅱ)在复平面内,若复数z所对应的点在第二象限,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年广东省惠州市高三第二次调研数学试卷(文科)(解析版) 题型:选择题

在复平面内,若z=m2(1+i)-m(4+i)-6i所对应的点在第二象限,则实数m的取值范围是( )
A.(0,3)
B.(-∞,-2)
C.(-2,0)
D.(3,4)

查看答案和解析>>

同步练习册答案