精英家教网 > 高中数学 > 题目详情

已知圆C和轴相切,圆心C在直线上,且被直线截得的弦长为,求圆C的方程.

(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9;

解析试题分析:由圆心C在直线上,可设设圆心坐标为(3m,m),又圆C和y轴相切,得圆的半径为3|m|,根据圆心到直线y=x的距离为,化简求出m,即而求出圆C的方程.
试题解析:设圆心坐标为(3m,m).                   2分
∵圆C和y轴相切,得圆的半径为3|m|,      4分
∴圆心到直线y=x的距离为.    6分
由半径、弦心距、半弦长的关系得9m2=7+2m2,    8分
∴m=±1,                                    10分
∴所求圆C的方程为
(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9.     12分
考点:1.圆的方程;2.点到直线距离公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知F1,F2分别是椭圆E:+y2=1的左、右焦点,F1,F2关于直线x+y-2=0的对称点是圆C的一条直径的两个端点.
(1)求圆C的方程;
(2)设过点F2的直线l被椭圆E和圆C所截得的弦长分别为a,b.当ab最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点A(-3,0),B(3,0),动点P满足|PA|=2|PB|.
(1)若点P的轨迹为曲线C,求此曲线的方程;
(2)若点Q在直线l1xy+3=0上,直线l2经过点Q且与曲线C只有一个公共点M,求|QM|的最小值.?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆经过点,且圆心在直线上.
(1)求圆的方程;
(2)若点为圆上任意一点,求点到直线的距离的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知圆与圆外切于点,直线是两圆的外公切线,分别与两圆相切于两点,是圆的直径,过作圆的切线,切点为.

(Ⅰ)求证:三点共线;
(Ⅱ)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆的左右顶点分别为,离心率.过该椭圆上任一点P作PQ⊥x轴,垂足为Q,点C在QP的延长线上,且
(1)求椭圆的方程;
(2)求动点C的轨迹E的方程;
(3)设直线AC(C点不同于A,B)与直线交于点R,D为线段RB的中点,试判断直线CD与曲线E的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点动点P满足.
(Ⅰ)若点的轨迹为曲线,求此曲线的方程;
(Ⅱ)若点在直线上,直线经过点且与曲线有且只有一个公共点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆问在圆C上是否存在两点A,B关于直线对称,且以AB为直径的圆经过原点?若存在,写出直线AB的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知在平面直角坐标系中,圆的参数方程为为参数),以为极轴建立极坐标系,直线的极坐标方程为.
⑴写出直线的直角坐标方程和圆的普通方程;
⑵求圆截直线所得的弦长.

查看答案和解析>>

同步练习册答案