已知F1,F2分别是椭圆E:
+y2=1的左、右焦点,F1,F2关于直线x+y-2=0的对称点是圆C的一条直径的两个端点.
(1)求圆C的方程;
(2)设过点F2的直线l被椭圆E和圆C所截得的弦长分别为a,b.当ab最大时,求直线l的方程.
(1)(x-2)2+(y-2)2=4 (2)x-
y-2=0或x+
y-2=0
解析解:(1)由题设知,F1,F2的坐标分别为(-2,0),(2,0),圆C的半径为2,圆心为原点O关于直线x+y-2=0的对称点.
设圆心的坐标为(x0,y0),
由
解得![]()
所以圆C的方程为(x-2)2+(y-2)2=4.
(2)由题意,可设直线l的方程为x=my+2,
则圆心到直线l的距离d=
.
所以b=2
=
.
由
得(m2+5)y2+4my-1=0.
设l与E的两个交点坐标分别为(x1,y1),(x2,y2),
则y1+y2=-
,y1y2=-
.
于是a=
=![]()
=![]()
=
=
.
从而ab=
=![]()
=
≤
=2
.
当且仅当
=
,即m=±
时等号成立.
故当m=±
时,ab最大,此时,直线l的方程为x=
y+2或x=-
y+2,
即x-
y-2=0或x+
y-2=0.
科目:高中数学 来源: 题型:解答题
已知圆
的方程:![]()
(1)求m的取值范围;
(2)若圆C与直线
相交于
,
两点,且
,求
的值
(3)若(1)中的圆与直线x+2y-4=0相交于M、N两点,且OM⊥ON(O为坐标原点),求m的值;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,圆O1与圆O2的半径都是1,O1O2=4,过动点P分别作圆O1、圆O2的切线PM、PN(M、N分别为切点),使得PM=
PN,试建立适当的坐标系,并求动点P的轨迹方程.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆
:![]()
,过定点
作斜率为1的直线交圆
于
、
两点,
为线段
的中点.
(1)求
的值;
(2)设
为圆
上异于
、
的一点,求△
面积的最大值;
(3)从圆外一点
向圆
引一条切线,切点为
,且有
, 求
的最小值,并求
取最小值时点
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆C经过点A(-2,0),B(0,2),且圆心C在直线y=x上,又直线l:y=kx+1与圆C相交于P、Q两点.
(1)求圆C的方程;
(2)若
·
=-2,求实数k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4.设圆C的半径为1,圆心在l上.
(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;
(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知曲线C上的动点P(
)满足到定点A(-1,0)的距离与到定点B(1,0)距离之比为![]()
(1)求曲线C的方程。
(2)过点M(1,2)的直线
与曲线C交于两点M、N,若|MN|=4,求直线
的方程。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com