精英家教网 > 高中数学 > 题目详情

已知实数x,y满足(x+2)2+(y-3)2=1,则|3x+4y-26|的最小值为________.

15
分析:通过|3x+4y-26|的几何意义,利用圆心到直线的距离减去半径求解即可.
解答:|3x+4y-26|的几何意义是圆上的点到直线3x+4y-26=0的距离减去半径后的5倍,
(即:|3x+4y-26|=,(a,b)是圆心坐标,r是圆的半径.)
就是所以实数x,y满足(x+2)2+(y-3)2=1,则|3x+4y-26|的最小值.
圆的圆心坐标(-2,3),半径是1,
所以圆心到直线的距离为:=4,
所以|3x+4y-26|的最小值为5×(4-1)=15.
故答案为:15.
点评:本题考查简单线性规划的应用,考查点到直线的距离,转化思想的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知实数x,y满足
x-y+2≥0
x+y≥0
x≤1
,则z=2x+y的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x、y满足
x≥1
y≥2
x+y≤4
,则u=
x+y
x
的取值范围是
[2,4]
[2,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
x+y≤2
x-y≤2
0≤x≤1
,则z=2x-3y的最大值是
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
y2-x≤0
x+y≤2
,则2x+y的最小值为
-
1
8
-
1
8
,最大值为
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)已知实数x,y满足|2x+y+1|≤|x+2y+2|,且|y|≤1,则z=2x+y的最大值为(  )

查看答案和解析>>

同步练习册答案