精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=ex-x2+b,曲线y=f(x)与直线y=ax+1相切于点(1,f(1)).
(1)求a、b的值;
(2)证明:当x>0时,[ex+(2-e)x-1](3+cosx)-4xsinx>0.

分析 (1)求出f(x)的导数,求得切线的斜率和切点坐标,解方程可得a,b的值;
( 2)由(Ⅰ)得,f(x)=ex-x2,首先证明:当x>0时,f(x)≥(e-2)x+1.运用导数和单调性可证;因x>0,则$\frac{{e}^{x}+(2-e)x-1}{x}$≥x(当且仅当x=1时等号成立).再证明:当x>0时,x>$\frac{4sinx}{3+cosx}$.通过令p(x)=x-$\frac{4sinx}{3+cosx}$,求出导数,判断单调性,即可得证.

解答 解:(1)f′(x)=ex-2x.  
由题设得a=f′(1)=e-2,a+1=f(1)=e-1+b.
故a=e-2,b=0.  
( 2)由(1)得,f(x)=ex-x2
下面证明:当x>0时,f(x)≥(e-2)x+1.
设g(x)=f(x)-(e-2)x-1,x>0.
则g′(x)=ex-2x-(e-2),
设h(x)=g′(x),则h′(x)=ex-2,
当x∈(0,ln2)时,h′(x)<0,h(x)单调递减,
当x∈(ln2,+∞)时,h′(x)>0,h(x)单调递增.
又h(0)=3-e>0,h(1)=0,0<ln2<1,h(ln2)<0,
所以?x0∈(0,1),h(x0)=0,
所以当x∈(0,x0)或x∈(1,+∞)时,g′(x)>0;
当x∈(x0,1)时,g′(x)<0,
故g(x)在(0,x0)和(1,+∞)单调递增,在(x0,1)单调递减,
又g(0)=g(1)=0,所以g(x)=ex-x2-(e-2)x-1≥0.
因x>0,则$\frac{{e}^{x}+(2-e)x-1}{x}$≥x(当且仅当x=1时等号成立).①,
以下证明:当x>0时,x>$\frac{4sinx}{3+cosx}$.
令p(x)=x-$\frac{4sinx}{3+cosx}$,
则p′(x)=1-$\frac{4(3cosx+1)}{(3+cosx)^{2}}$=$\frac{(cosx-1)(cosx-5)}{(3+cosx)^{2}}$≥0,
(当且仅当x=2kπ,k∈Z时等号成立).
所以p(x)在(0,+∞)单调递增,当x>0时,p(x)=x-$\frac{4sinx}{3+cosx}$>p(0)=0,
即x>$\frac{4sinx}{3+cosx}$.②
由①②得当x>0时,$\frac{{e}^{x}+(2-e)x-1}{x}$>$\frac{4sinx}{3+cosx}$,
又x(3+cosx)>0,
故[ex+(2-e)x-1](3+cosx)-4xsinx>0.

点评 本题考查导数的运用:求切线的斜率和单调区间,主要考查单调性的运用,同时考查不等式的证明,注意运用构造函数的方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知数列{an}中,a1=1,an+1=$\frac{1}{a}$•an2(a>0),求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,内角A,B,C所对边长分别为a,b,c,若c=2$\sqrt{3}$,B=$\frac{π}{4}$,C=$\frac{π}{3}$,则a等于(  )
A.$\sqrt{3}+\sqrt{2}$B.$\sqrt{2}+\sqrt{6}$C.$\sqrt{3}+\sqrt{6}$D.2+$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}满足a1=$\frac{1}{5}$,且当n≥2,n∈N+时,有$\frac{{a}_{n-1}}{{a}_{n}}$=$\frac{2{a}_{n-1}+1}{1-2{a}_{n}}$.
(1)求证:数列{$\frac{1}{an}$}为等差数列;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知an+1=an2-nan+1,a1=3.
(1)求a2,a3,a4的值;
(2)判断an与n+2的关系,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\left\{\begin{array}{l}{f(x+3),x<6}\\{lo{g}_{a}x,x≥6}\end{array}\right.$,若f(-1)<3,则a的取值范围是(  )
A.(0,1)∪(2,+∞)B.(2,+∞)C.(0,1)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}满足:a1=$\frac{1}{2}$,an+1=$\frac{{a}_{n}}{{e}^{n}{a}_{n}+e}$,n∈N*
(1)求数列{an}的通项an
(2)设Sn=a1+a2+…+an,求证:Sn≤$\frac{n}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,a,b,c分别是角A,B,C的对边,且角B,A,C成等差数列.
(1)若a2-c2=b2-mbc,求实数m的值;
(2)若a=$\sqrt{3}$,b-c=3,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}的通项公式an=Atn-1+Bn+1,其中A,B,t为常数,且t>1,n∈n+,等式(x2+2x+2)10=b0+b1(x+1)+b2(x+1)2+…+b20(x+1)20,其中bi(i=1,2,3…,20)为实常数.
(1)若A=0,B=1,求$\sum_{n=1}^{10}$anbn
(2)若A=1,B=0,且$\sum_{n=1}^{10}$(2an-2n)b2n=211-2,求实数t的值.

查看答案和解析>>

同步练习册答案