精英家教网 > 高中数学 > 题目详情
15.如果向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为θ,那么我们称$\overrightarrow{a}$×$\overrightarrow{b}$为向量$\overrightarrow{a}$与$\overrightarrow{b}$的“向量积”,$\overrightarrow{a}$×$\overrightarrow{b}$是一个向量,它的长度|$\overrightarrow{a}$×$\overrightarrow{b}$|=|$\overrightarrow{a}$||$\overrightarrow{b}$|sinθ,如果|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=2,$\overrightarrow{a}$•$\overrightarrow{b}$=-2,则|$\overrightarrow{a}$×$\overrightarrow{b}$|=$4\sqrt{2}$.

分析 利用两个向量的数量积的定义求出 cosθ,利用同角三角函数的基本关系求出sinθ,代入|$\overrightarrow{a}$×$\overrightarrow{b}$|=|$\overrightarrow{a}$||$\overrightarrow{b}$|sinθ,求出所求的式子的值.

解答 解:∵|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=2,$\overrightarrow{a}$•$\overrightarrow{b}$=-2,∴$\overrightarrow{a}$•$\overrightarrow{b}$=2×3×cosθ=-2,
∴cosθ=-$\frac{1}{3}$.又∵0≤θ≤π,∴sinθ=$\frac{2\sqrt{2}}{3}$.
∴|$\overrightarrow{a}$×$\overrightarrow{b}$|=3•2•$\frac{2\sqrt{2}}{3}$=$4\sqrt{2}$,
故答案为:$4\sqrt{2}$.

点评 本题考查两个向量的数量积的定义,同角三角函数的基本关系,求出sinθ是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.若x,y>0且x+y>2,则$\frac{1+y}{x}$和$\frac{1+x}{y}$的值满足(  )
A.$\frac{1+y}{x}$和$\frac{1+x}{y}$中至少有一个小于2B.$\frac{1+y}{x}$和$\frac{1+x}{y}$都等于2
C.$\frac{1+y}{x}$和$\frac{1+x}{y}$都大于2D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,△O′A′B′是水平放置的△OAB的直观图,则△OAB的面积是(  )
A.6B.3$\sqrt{2}$C.6$\sqrt{2}$D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.解答下列问题:
(1)已知点P(-4t,t)在角α的终边上,且α∈(0,π),求$\frac{sinα(1-ta{n}^{2}α)}{\frac{1}{cosα}}$的值;
(2)设等比数列{an}的a3+a5=30,且a1a7=81,求通项an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设集合A={(x,y)|y=2x-1,∈N*},B={(x,y)|y=ax2-ax+a,x∈N*},问是否存在非零整数a,使A∩B=∅.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.以下四个命题中,真命题的个数为(  )
①命题“?x0∈∁RQ,x${\;}_{{0}^{\;}}$3∈R”的否定是“?x0∈∁RQ,x${\;}_{{0}^{\;}}$3∉Q”;
②若命题“¬P”与命题“p或q”都是真命题,则命题q一定是真命题;
③“a=2”是“直线y=-ax+2与y=$\frac{a}{4}$x-1垂直”的充分不必要条件;
④直线x+$\sqrt{3}$y-2=0与圆x2+y2=4相交于A,B两点,则弦AB的长为$\sqrt{3}$.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.不等式|$\frac{x-1}{x}$|>$\frac{x-1}{x}$的解集是(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知关于x的不等式(m-2)x2+2(m-2)x-4<0.
(1)当m=$\frac{10}{3}$时,求不等式的解集.
(2)若不等式对一切x∈R恒成立,求实数m取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.用数字0,1,2,3,4,5组成没有重复数字的数①能组成多少个四位数?②能组成多少个四位偶数?

查看答案和解析>>

同步练习册答案