精英家教网 > 高中数学 > 题目详情

(本题满分12分)三棱锥中,

(Ⅰ)求证:平面平面
(Ⅱ)若,且异面直线的夹角为时,求二面角的余弦值.

(1)通过建立空间直角坐标系来分析,或者利用线面垂直平面,进而得到面面垂直。
(2)

解析试题分析:证明:(Ⅰ)作平面于点,∵

,即的外心
又∵中,
边的中点
所以平面
即证:平面平面.  .......6分
(Ⅱ)∵中,,∴
,且异面直线的夹角为
,∴为正三角形,可解得.
为坐标原点,建立如图所示空间直角坐标系,则

,∴. …………………….9分
设平面的法向量为

,  取
平面的法向量为
.
由图可知,所求二面角为钝角,其的余弦值为.    ……….12分
考点:本试题主要是考查了线线垂直的证明,以及二面角的求解知识。
点评:解决该类立体几何问题,尤其是二面角的求解,通常情况下,都是建立空间直角坐标系,借助于法向量来求解二面角的方法。而对于面面垂直的证明,一般都是利用线面垂直为前提,结合面面垂直的判定定理得到,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图:

(1)求的大小;
(2)当时,判断的形状,并求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,棱柱ABCD—的底面为菱 形 ,AC∩BD=O侧棱BD,F的中点.

(Ⅰ)证明:平面
(Ⅱ)证明:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在四棱锥中,底面ABCD是边长为a的正方形,侧面底面ABCD,且,若EF分别为PCBD的中点.

(1)求证:平面PAD
(2)求证:平面PDC平面PAD
(3)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
如图,在三棱锥P-ABC中,底面△ABC为等边三角形,∠APC=90°,PB=AC=2PA=4,O为AC的中点。

(Ⅰ)求证:BO⊥PA;
(Ⅱ)判断在线段AC上是否存在点Q(与点O不重合),使得△PQB为直角三角形?若存在,试找出一个点Q,并求的值;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,BCD=60,E是CD的中点,PA底面ABCD,PA=2.

(1)证明:平面PBE平面PAB;
(2)求平面PAD和平面PBE所成二面角的正弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1,在平行四边形ABCD中,AB=1,BD,∠ABD=90°,EBD上的一个动点,现将该平行四边形沿对角线BD折成直二面角ABDC,如图2所示.

(1)若FG分别是ADBC的中点,且AB∥平面EFG,求证:CD∥平面EFG
(2)当图1中AEEC最小时,求图2中二面角AECB的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图所示,△是正三角形,都垂直于平面,且的中点.

(1)求证:∥平面
(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
正方体ABCD-A1B1C1D1中,E、G分别是BC、C1D1的中点,如图所示.

(1)求证:BD⊥A1C;
(2)求证:EG∥平面BB1D1D.

查看答案和解析>>

同步练习册答案