(本小题满分12分)如图,棱柱ABCD—的底面为菱 形 ,AC∩BD=O侧棱⊥BD,点F为的中点.
(Ⅰ)证明:平面;
(Ⅱ)证明:平面平面.
科目:高中数学 来源: 题型:解答题
(满分12分)如右图,在正三棱柱ABC—A1B1C1中,AA1=AB,D是AC的中点。
(Ⅰ)求证:B1C//平面A1BD;
(Ⅰ)求二面角A—A1B—D的余弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分l2分)
如图,在多面体ABCDEF中,ABCD为菱形,ABC=60,EC面ABCD,FA面ABCD,G为BF的中点,若EG//面ABCD.
(1)求证:EG面ABF;
(2)若AF=AB,求二面角B—EF—D的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知:如图,在四棱锥中,四边形为正方形,,且,为中点.
(1)证明://平面;
(2)证明:平面平面;
(3)求二面角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形,
(1)线段的中点为,线段的中点为,求证:;
(2)求直线与平面所成角的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
四棱锥,面⊥面.侧面是以为直角顶点的等腰直角三角形,底面为直角梯形,,∥,⊥,为上一点,且.
(Ⅰ)求证⊥;
(Ⅱ)求二面角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在直三棱柱中,,,是的中点.
(1)求证:平行平面;
(2)求二面角的余弦值;
(3)试问线段上是否存在点,使与成角?若存在,确定点位置,若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com