精英家教网 > 高中数学 > 题目详情

(本小题满分14分)
如图,在三棱锥P-ABC中,底面△ABC为等边三角形,∠APC=90°,PB=AC=2PA=4,O为AC的中点。

(Ⅰ)求证:BO⊥PA;
(Ⅱ)判断在线段AC上是否存在点Q(与点O不重合),使得△PQB为直角三角形?若存在,试找出一个点Q,并求的值;若不存在,说明理由。

(Ⅰ)在等边△ABC中BO⊥AC,BO=,在直角△PAC中PO=2,在△PBO中,由PB=4,得PB2=PO2+BO2所以BO⊥PO所以BO⊥平面PAC所以BO⊥PA(Ⅱ)线段AC上存在点Q, 满足使得△PQB为直角三角形

解析试题分析:(Ⅰ)证明:如图,连结PO,

在等边△ABC中,因为O是AC的中点,且AC=4,
所以BO⊥AC,BO=
在直角△PAC中,因为O是斜边AC的中点,且AC=4,
所以PO=2,
在△PBO中,由PB=4,得PB2=PO2+BO2
所以BO⊥PO。    3分
又因为AC∩PO=O,AC平面PAC,PO平面PAC,
所以BO⊥平面PAC,  5分
又因为PA平面PAC,
所以BO⊥PA。         7分
(Ⅱ)答:线段AC上存在点Q,使得△PQB为直角三角形。
具体过程如下:
如图,过P作PM⊥AC于点M,连结BM,
因为BO⊥平面PAC,
所以BO⊥PM。
又因为BO∩AC=O,BO平面ABC,AC平面ABC,
所以PM⊥平面ABC,                                                10分
所以PM⊥BM,即△PMB为直角三角形。
故当点Q与点M重合时,△PQB为直角三角形。                            12分
在直角△PAC中,由∠APC=90°,AC=2PA=4,
得AM=1,(即AQ=1),MC=3(即QC=3),
所以当时,△PQB为直角三角形。                    14分
考点:线线垂直线面垂直的判定和性质
点评:线线垂直与线面垂直之间可以互为条件结论,本题主要利用两者间的互相推出关系证明计算

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分12分) 本题共有2个小题,第1小题满分6分,第2小题满分6分.
如图已知四棱锥的底面是边长为6的正方形,侧棱的长为8,且垂直于底面,点分别是的中点.求

(1)异面直线所成角的大小(结果用反三角函数值表示);
(2)四棱锥的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形,

(1)线段的中点为,线段的中点为,求证:
(2)求直线与平面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
四棱锥,面⊥面.侧面是以为直角顶点的等腰直角三角形,底面为直角梯形,,,上一点,且.

(Ⅰ)求证
(Ⅱ)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)如图,平面,点上,,四边形为直角梯形,,

(1)求证:平面
(2)求二面角的余弦值;
(3)直线上是否存在点,使∥平面,若存在,求出点;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)三棱锥中,

(Ⅰ)求证:平面平面
(Ⅱ)若,且异面直线的夹角为时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
在正四棱锥V - ABCD中,P,Q分别为棱VB,VD的中点, 点M在边BC上,且BM: BC = 1 : 3,AB =2,VA =" 6."

(I )求证CQ∥平面PAN;
(II)求证:CQ⊥AP.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
如图,在直三棱柱ABC-A1B1C1中,的中点,中点.

(1)求证:∥面
(2)求直线EF与直线所成角的正切值;
(3)设二面角的平面角为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,在四棱锥S - ABCD中,底面ABCD是直角梯形,侧棱SA⊥底面ABCD,AB垂直于AD和BC,SA ="AB=BC" =2,AD =1.M是棱SB的中点.

(Ⅰ)求证:AM∥面SCD;
(Ⅱ)求面SCD与面SAB所成二面角的余弦值;
(Ⅲ)设点N是直线CD上的动点,MN与面SAB所成的角为,求sin的最大值,

查看答案和解析>>

同步练习册答案