(本小题满分12分)
如图,在四棱锥S - ABCD中,底面ABCD是直角梯形,侧棱SA⊥底面ABCD,AB垂直于AD和BC,SA ="AB=BC" =2,AD =1.M是棱SB的中点.
(Ⅰ)求证:AM∥面SCD;
(Ⅱ)求面SCD与面SAB所成二面角的余弦值;
(Ⅲ)设点N是直线CD上的动点,MN与面SAB所成的角为,求sin的最大值,
(Ⅰ)见解析;(Ⅱ)平面SCD与平面SAB所成二面角的余弦值为.
(Ⅲ)时,.
解析试题分析:(Ⅰ)以点A为原点建立如图所示的空间直角坐标系,
则
, ,,,,.
则.
设平面SCD的法向量是则
即
令,则,于是.
,.
AM∥平面SCD. …………………………(4分)
(Ⅱ)易知平面SAB的法向量为.设平面SCD与平面SAB所成的二面角为,
则,即.
平面SCD与平面SAB所成二面角的余弦值为.………………………(8分)
(Ⅲ)设,则.
又,面SAB的法向量为,
所以,.
.
当,即时,.…………………………(12分)
考点:本题主要考查立体几何中线面平行及角的计算,空间向量的应用
点评:典型题,立体几何中平行、垂直关系的证明及角的计算问题是高考中的必考题,通过建立适当的坐标系,可使问题简化。
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
如图,在三棱锥P-ABC中,底面△ABC为等边三角形,∠APC=90°,PB=AC=2PA=4,O为AC的中点。
(Ⅰ)求证:BO⊥PA;
(Ⅱ)判断在线段AC上是否存在点Q(与点O不重合),使得△PQB为直角三角形?若存在,试找出一个点Q,并求的值;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图,在四棱锥中,底面是矩形,平面,,.于点,是中点.
(1)用空间向量证明:AM⊥MC,平面⊥平面;
(2)求直线与平面所成的角的正弦值;
(3)求点到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分16分)
如图,在四棱锥中,底面是矩形,平面,,.以的中点为球心、为直径的球面切于点.
(1)求证:PD⊥平面;
(2)求直线与平面所成的角的正弦值;
(3)求点到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)如图所示,在棱长为4的正方体ABCD—A1B1C1D1中,点E是棱CC1的中点。
(I)求三棱锥D1—ACE的体积;
(II)求异面直线D1E与AC所成角的余弦值;
(III)求二面角A—D1E—C的正弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
正方体ABCD-A1B1C1D1中,E、G分别是BC、C1D1的中点,如图所示.
(1)求证:BD⊥A1C;
(2)求证:EG∥平面BB1D1D.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知棱长为1的正方体ABCD-A1B1C1D1中,P在对角线A1C1上,记二面角P-AB-C为α,二面角P-BC-A为β。
(1)当A1P:PC1=1:3时,求cos(α+β)的大小。
(2)点P是线段A1C1(包括端点)上的一个动点,问:当点P在什么位置时,α+β有最小值?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com