精英家教网 > 高中数学 > 题目详情

(本小题满分14分) 如图,在直三棱柱中,分别是的中点,点上,
 
求证:(1)EF∥平面ABC;    
(2)平面平面

(1)见解析;(2)见解析。

解析试题分析:(1)因为E,F分别是的中点,所以,又
所以…………6分
(2)因为直三棱柱,所以,又
所以,又
所以。…………….14分
考点:线面垂直的判断定理;线面平行的判定定理;面面垂直的判定定理;中位线的性质;直棱柱的结构特征。
点评:①本题主要考查了空间的线面平行,面面垂直的证明,充分考查了学生的逻辑推理能力,空间想象力,以及识图能力。②我们要熟练掌握正棱柱、直棱柱的结构特征。正棱柱:底面是正多边形,侧棱垂直底面。直棱柱:侧棱垂直底面。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
如图,在直三棱柱ABC-A1B1C1中,的中点,中点.

(1)求证:∥面
(2)求直线EF与直线所成角的正切值;
(3)设二面角的平面角为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,在四棱锥S - ABCD中,底面ABCD是直角梯形,侧棱SA⊥底面ABCD,AB垂直于AD和BC,SA ="AB=BC" =2,AD =1.M是棱SB的中点.

(Ⅰ)求证:AM∥面SCD;
(Ⅱ)求面SCD与面SAB所成二面角的余弦值;
(Ⅲ)设点N是直线CD上的动点,MN与面SAB所成的角为,求sin的最大值,

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直四棱柱ABCD—A′B′C′D′的底面是菱形,,E、F分别是棱CC′与BB′上的点,且EC=BC=2FB=2.

(1)求证:平面AEF⊥平面AA′C′C;
(2)求截面AEF与底面ABCD所成二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)右图是一个直三棱柱(以为底面)被一平面所截得到的几何体,截面为 已知

(Ⅰ)设点的中点,证明:平面
(Ⅱ)求二面角的大小;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知:如图,在四棱锥中,四边形为正方形,,且中点.
(Ⅰ)证明://平面
(Ⅱ)证明:平面平面
(Ⅲ)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分) 如图,在四棱锥中,底面是正方形,侧棱⊥底面的中点,作于点
(1) 证明//平面
(2) 证明⊥平面
(3) 求二面角的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,已知平面是垂足.

(Ⅰ)求证:平面;             
(Ⅱ)若,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为空间四边形的边上的点,且,求证:

查看答案和解析>>

同步练习册答案