精英家教网 > 高中数学 > 题目详情

已知直四棱柱ABCD—A′B′C′D′的底面是菱形,,E、F分别是棱CC′与BB′上的点,且EC=BC=2FB=2.

(1)求证:平面AEF⊥平面AA′C′C;
(2)求截面AEF与底面ABCD所成二面角的大小.

(1)以O为原点,分别为x,y,z轴建立直角坐标系, M(0,0,1)F(,0,1)=(,0,0), MF⊥平面,所以平面AEF⊥平面(2)

解析试题分析:(1)以O为原点,分别为x,y,z轴建立直角坐标系,
由条件知:EC=BC=2,FB=1,OA=1,OB=
从而坐标E(0,1,2),F(,0,1).
(1)连结AE与交于M,连结MF,
可得,M(0,0,1),
=(,0,0).
则MF⊥平面yOz,即MF⊥平面
所以平面AEF⊥平面.
(2)取EC中点G,得平面MFG∥底面ABCD,
所以只要求面AEF与面MFG所成的二面角即可.

,可见是面AEF与面MFG所成二面角的平面角.
在Rt△MGE中,EG=1,MG=1,ME=,显然,所求二面角为.
考点:面面垂直的判定与二面角求解
点评:本题利用向量求解较简单,坐标原点在底面对角线交点处

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图1,在平行四边形ABCD中,AB=1,BD,∠ABD=90°,EBD上的一个动点,现将该平行四边形沿对角线BD折成直二面角ABDC,如图2所示.

(1)若FG分别是ADBC的中点,且AB∥平面EFG,求证:CD∥平面EFG
(2)当图1中AEEC最小时,求图2中二面角AECB的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分16分)
如图,在四棱锥中,底面是矩形,平面.以的中点为球心、为直径的球面切于点

(1)求证:PD⊥平面
(2)求直线与平面所成的角的正弦值;
(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
正方体ABCD-A1B1C1D1中,E、G分别是BC、C1D1的中点,如图所示.

(1)求证:BD⊥A1C;
(2)求证:EG∥平面BB1D1D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在四棱锥中,底面为矩形,平面,点在线段上,平面.

(Ⅰ)证明:平面;
(Ⅱ)若,,求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知正方形ABCD的边长为1,FD⊥平面ABCD,EB⊥平面ABCD,FD=BE=1,M为BC边上的动点.试探究点M的位置,使F—AE—M为直二面角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分) 如图,在直三棱柱中,分别是的中点,点上,
 
求证:(1)EF∥平面ABC;    
(2)平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,长方体AC1中,AB=2,BC=AA1=1.E、F、G分别为棱DD1、D1C1、BC的中点.

(1)求证:平面平面
(2)在底面A1D1上有一个靠近D1的四等分点H,求证: EH∥平面FGB1
(3)求四面体EFGB1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
如图,四棱锥的侧面垂直于底面在棱上,的中点,二面角

(1)求的值;
(2)求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案