如图,长方体AC1中,AB=2,BC=AA1=1.E、F、G分别为棱DD1、D1C1、BC的中点.
(1)求证:平面平面;
(2)在底面A1D1上有一个靠近D1的四等分点H,求证: EH∥平面FGB1;
(3)求四面体EFGB1的体积.
(1)见解析;
(2) H在A1D1上,且HD1=A1D1时,EH∥平面FGB1.
(3) V四面体EFGB1=VE—FGB1=VH—FGB1=×1×=.
解析试题分析:(1)根据面面垂直的判定定理来得到证明。
(2)取A1D1的中点P,D1P的中点H,连接DP、EH,通过EH∥平面FGB1,说明EH∥B1G,得到HD1= A1D1.
(3)以D为原点,直线DA、DC、DD1为x、y、z轴建立空间直角坐标系,利用法向量,求出E到平面FGB1的距离d,底面S△FGB1,然后求四面体EFGB1的体积.
解:(1)
(2)取A1D1的中点P,D1P的中点H,连结DP、EH,则DP∥B1G,EH∥DP,
∴EH∥B1G,又B1G?平面FGB1,∴EH∥平面FGB1.
即H在A1D1上,且HD1=A1D1时,EH∥平面FGB1.
(3)∵EH∥平面FGB1,∴VE—FGB1=VH—FGB1,
而VH—FGB1=VG—HFB1=×1×S△HFB1,
S△HFB1=S梯形B1C1D1H-S△B1C1F-S△D1HF=,
∴V四面体EFGB1=VE—FGB1=VH—FGB1=×1×=.
考点:本题主要考查了考查直线与平面的位置关系,探究点的位置,几何体的体积的求法,考查空间想象能力,计算能力.中档试题。
点评:解决该试题的关键是熟练的利用面面垂直的判定定理得到证明,同时能家里空间直角坐标系来表示平面的法向量,进而求解体积。
科目:高中数学 来源: 题型:解答题
如图,在直三棱柱中,,,是的中点.
(1)求证:平行平面;
(2)求二面角的余弦值;
(3)试问线段上是否存在点,使与成角?若存在,确定点位置,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知直四棱柱ABCD—A′B′C′D′的底面是菱形,,E、F分别是棱CC′与BB′上的点,且EC=BC=2FB=2.
(1)求证:平面AEF⊥平面AA′C′C;
(2)求截面AEF与底面ABCD所成二面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分) 如图,在四棱锥中,底面是正方形,侧棱⊥底面,,是的中点,作交于点
(1) 证明//平面;
(2) 证明⊥平面;
(3) 求二面角——的大小。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题12分)如图,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形.
(Ⅰ)求证:DM∥平面APC;
(II)求证:平面ABC⊥平面APC.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com