精英家教网 > 高中数学 > 题目详情

如图,棱柱的侧面是菱形,.
(Ⅰ)证明:平面平面
(Ⅱ)设上的点,且平面,求的值.

(Ⅰ)见解析;(Ⅱ)1.

解析试题分析:(Ⅰ)因为侧面BCC1B1是菱形,所以,又已

平面A1BC1,又平面AB1C ,所以平面平面A1BC1 .
(Ⅱ)设BC1交B1C于点E,连结DE,   则DE是平面A1BC1与平面B1CD的交线,因为A1B//平面B1CD,所以A1B//DE.又E是BC1的中点,所以D为A1C1的中点.即A1D:DC1=1.
考点:面面垂直的判定定理;线面平行的判定定理;线面平行的性质定理。
点评:题考查平面与平面垂直的判定,直线与平面平行的性质,考查空间想象能力,逻辑思维能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题12分)如图,在长方体ABCD-A1B1C1D1中,E, F分别是棱BC,CC1上的点,CF="AB=2CE," AB:AD:AA1=1:2:4.

(Ⅰ)求异面直线EF与A1D所成角的余弦值;
(Ⅱ)证明AF⊥平面A1ED;
(Ⅲ)求二面角A1-ED-F的正弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知正方形ABCD的边长为1,FD⊥平面ABCD,EB⊥平面ABCD,FD=BE=1,M为BC边上的动点.试探究点M的位置,使F—AE—M为直二面角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,⊥底面,底面为梯形,,,,点在棱上,且

(1)求证:平面⊥平面
(2)求平面和平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,长方体AC1中,AB=2,BC=AA1=1.E、F、G分别为棱DD1、D1C1、BC的中点.

(1)求证:平面平面
(2)在底面A1D1上有一个靠近D1的四等分点H,求证: EH∥平面FGB1
(3)求四面体EFGB1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
(本题满分12分)
如图,已知三棱锥的侧棱两两垂直,
的中点。
(1)求异面直线所成角的余弦值;
(2)求直线BE和平面的所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知四棱锥的底面是正方形,⊥底面,且,点分别为侧棱的中点 

(1)求证:∥平面
(2)求证:⊥平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)如图,已知三棱锥的侧棱两两垂直,且的中点.

(Ⅰ)求异面直线所成角的余弦值;
(Ⅱ)BE和平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在正方体中,为底面的中心,的中点,设上的中点,求证:(1);
(2)平面∥平面.

查看答案和解析>>

同步练习册答案