(本小题满分12分) 如图,在四棱锥中,底面
是正方形,侧棱
⊥底面
,
,
是
的中点,作
交
于点
(1) 证明//平面
;
(2) 证明⊥平面
;
(3) 求二面角—
—
的大小。
(1)证明:见解析;(2)证明:见解析;(3)二面角—
—
的大小为
解析试题分析:(1)连结,
交
于O,连结
∵底面是正方形,∴点O是
的中点
在中,
是中位线,∴
//
, 得到证明。
(2)∵⊥底面
且
底面
,
∴∵
,可知
是等腰直角三角形,而
是斜边
的中线,
∴ 推理得到
平面
又且
,所以
⊥平面
(3)由(2)知,
,
故是二面角
—
—
的平面角
解:(1)证明:连结,
交
于O,连结
∵底面是正方形,∴点O是
的中点
在中,
是中位线,∴
//
…(1分)
而平面EDB且
平面
,
所以, // 平面
…(3分)
(2)证明:∵⊥底面
且
底面
,
∴
∵,可知
是等腰直角三角形,而
是斜边
的中线,
∴ ① …(4分)
同样由⊥底面
,得
⊥
∵底面是正方形,有DC⊥
,∴
⊥平面
…(5分)
而平面
,∴
②
由①和②推得平面
而
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图,在四棱锥中,底面
是矩形,
平面
,
,
.
于点
,
是
中点.
(1)用空间向量证明:AM⊥MC,平面⊥平面
;
(2)求直线与平面
所成的角的正弦值;
(3)求点到平面
的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题11分)如图,三棱锥C—ABD,CB = CD,AB = AD,∠BAD = 90°。E、F分别是BC、AC的中点。
(1)求证:AC⊥BD;
(2)若CA = CB,求证:平面BCD⊥平面ABD
(3)在上找一点M,在AD上找点N,使平面MED//平面BFN,说明理由;并求出
的值
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,长方体AC1中,AB=2,BC=AA1=1.E、F、G分别为棱DD1、D1C1、BC的中点.
(1)求证:平面平面
;
(2)在底面A1D1上有一个靠近D1的四等分点H,求证: EH∥平面FGB1;
(3)求四面体EFGB1的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
如图,已知几何体的三视图(单位:cm).
(1)在这个几何体的直观图相应的位置标出字母;(2分)
(2)求这个几何体的表面积及体积;(6分)
(3)设异面直线、
所成角为
,求
.(6分)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知棱长为1的正方体ABCD-A1B1C1D1中,P在对角线A1C1上,记二面角P-AB-C为α,二面角P-BC-A为β。
(1)当A1P:PC1=1:3时,求cos(α+β)的大小。
(2)点P是线段A1C1(包括端点)上的一个动点,问:当点P在什么位置时,α+β有最小值?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)如图(甲),在直角梯形ABED中,AB//DE,ABBE,AB
CD,且BC=CD,AB=2,F、H、G分别为AC ,AD ,DE的中点,现将△ACD沿CD折起,使平面ACD
平面CBED,如图(乙).
(1)求证:平面FHG//平面ABE;
(2)记表示三棱锥B-ACE 的体积,求
的最大值;
(3)当取得最大值时,求二面角D-AB-C的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com