精英家教网 > 高中数学 > 题目详情
10.已知正实数a,b满足$\frac{1}{a}$+$\frac{9}{b}$=1,则a+b的最小值为(  )
A.16B.8C.12D.10

分析 利用基本不等式的性质与“乘1法”即可得出.

解答 解:∵正实数a,b满足$\frac{1}{a}$+$\frac{9}{b}$=1,
则a+b=(a+b)$(\frac{1}{a}+\frac{9}{b})$=10+$\frac{b}{a}$+$\frac{9a}{b}$≥10+2$\sqrt{\frac{b}{a}×\frac{9a}{b}}$=16,当且仅当b=3a=12时取等号.
∴a+b的最小值为16.
故选:A.

点评 本题考查了基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=lnx+a(x2-3x)(a∈R)
(Ⅰ)当a=1时,求函数f(x)的极值;
(Ⅱ)讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求点A(2,1)与B(1,-2)之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知在三棱锥P-ABC中,VP-ABC=$\frac{4\sqrt{3}}{3}$,∠APC=$\frac{π}{4}$,∠BPC=$\frac{π}{3}$,PA⊥AC,PB⊥BC,且平面PAC⊥平面PBC,那么三棱锥P-ABC外接球的半径为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x2-2lnx-2ax(a∈R).
(1)当a=0时,求函数f(x)的极值;
(2)当x∈(1,+∞)时,试讨论关于x的方程f(x)+ax2=0实数根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,已知AA1⊥平面ABC,BB1∥AA1,AB=AC=3,BC=2$\sqrt{5}$,AA1=$\sqrt{7}$,BB1=2$\sqrt{7}$,点E和F分别为BC和A1C的中点.
(Ⅰ)求证:EF∥平面A1B1BA; 
(Ⅱ)求异面直线A1E与B1C所成角的大小; 
(Ⅲ)求直线A1B1与平面BCB1所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.四面体ABCD中,AB⊥BC,AD⊥面ABC,AD=$\sqrt{7}$,AB=3,BC=4,此四面体的外接球的表面积为(  )
A.28πB.32πC.36πD.48π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=x3-3x2+2,函数g(x)=$\left\{\begin{array}{l}{-(x+3)^{2}+1,x<0}\\{(x-\frac{1}{2})^{2}+1,x≥0}\end{array}\right.$,则关于x的方程g[f(x)]-a=0(a>0)的实根最多有(  )
A.4个B.5个C.6个D.7个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知z∈C,且|z-2-2i|=1,则|z|的最小值为2$\sqrt{2}$-1.

查看答案和解析>>

同步练习册答案