分析 利用等体积转换,求出PC,PA⊥AC,PB⊥BC,可得PC的中点为球心,球的半径.
解答 解:由题意,设PC=2x,则
∵PA⊥AC,∠APC=$\frac{π}{4}$,
∴△APC为等腰直角三角形,
∴PC边上的高为x,
∵平面PAC⊥平面PBC,
∴A到平面PBC的距离为x,
∵∠BPC=$\frac{π}{3}$,PA⊥AC,PB⊥BC,
∴PB=x,BC=$\sqrt{3}$x,
∴S△PBC=$\frac{1}{2}x•\sqrt{3}x$=$\frac{\sqrt{3}}{2}{x}^{2}$,
∴VP-ABC=VA-PBC=$\frac{1}{3}×$$\frac{\sqrt{3}}{2}{x}^{2}$×x=$\frac{4\sqrt{3}}{3}$,
∴x=2,
∵PA⊥AC,PB⊥BC,
∴PC的中点为球心,球的半径为2.
故答案为:2.
点评 本题考查三棱锥P-ABC外接球的体积,考查学生的计算能力,正确确定球心与球的半径是关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({0,\frac{e^2}{2}})$ | B. | $({0,\frac{e^2}{2}}]$ | C. | $({0,\frac{e^2}{3}})$ | D. | $({0,\frac{e^2}{3}}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1) | B. | [1,2] | C. | (0,1] | D. | (1,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | -2 | C. | 3 | D. | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com