分析 先推导出$\overrightarrow{AB}$∥$\overrightarrow{CD}$,再求出线段AD的中点E和线段BC的中点F,由此利用两点间距离公式能求出梯形ABCD的中位线长.
解答 解:∵梯形ABCD的四个顶点的坐标分别是A(0,0),B(3,0),C(2,$\sqrt{3}$)和D(1,$\sqrt{3}$),
∴$\overrightarrow{AB}$=(3,0),$\overrightarrow{CD}$=(-1,0),∴$\overrightarrow{AB}$∥$\overrightarrow{CD}$,
∵线段AD的中点E($\frac{1}{2},\frac{\sqrt{3}}{2}$),线段BC的中点F($\frac{5}{2}$,$\frac{\sqrt{3}}{2}$),
∴梯形ABCD的中位线长|EF|=$\sqrt{(\frac{5}{2}-\frac{1}{2})^{2}+(\frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{2})^{2}}$=2.
点评 本题考查梯形的中位线长的求法,是中档题,解题时要认真审题,注意两点间距离公式的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{\sqrt{1-{k}^{2}}}{k}$ | B. | $\frac{\sqrt{1-{k}^{2}}}{k}$ | C. | ±$\frac{\sqrt{1-{k}^{2}}}{k}$ | D. | k$\sqrt{1-{k}^{2}}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com