精英家教网 > 高中数学 > 题目详情
12.∠AOB在平面α内,OC是α的斜线,OB为OC在平面α内的射影,若∠COA=θ,∠COB=θ1,∠BOA=θ2,则cosθ、cosθ1、cosθ2三者之间满足的关系为cosθ=cosθ1•cosθ2

分析 过C作CB⊥OB于B,过B作BA⊥OA于A,连接AC.则可证OA⊥AC,用OA,OB,OC表示出三个角的余弦值即可得出结论.

解答 解:过C作CB⊥OB于B,过B作BA⊥OA于A,连接AC.
∵OB为OC在平面α内的射影,∴BC⊥平面α,
∵OA?平面α,
∴BC⊥OA,又OA⊥AB,BC∩AB=B,
∴OA⊥平面ABC,∴OA⊥AC.
∴cosθ=$\frac{OA}{OC}$.cosθ1=$\frac{OB}{OC}$,cosθ2=$\frac{OA}{OB}$.
∴cosθ=cosθ1•cosθ2
故答案为:cosθ=cosθ1•cosθ2

点评 本题考查了线面角的定义,线面垂直的判定,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.(1)已知a,b,m都是正数,且a<b,用分析法证明$\frac{a+m}{b+m}$>$\frac{a}{b}$;
(2)已知数列{an}的通项公式为an=$\frac{{3}^{n}-1}{2}$,n∈N*.利用(1)的结论证明如下等式:$\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+…+\frac{1}{a_n}<\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知梯形ABCD的四个顶点的坐标分别是A(0,0),B(3,0),C(2,$\sqrt{3}$)和D(1,$\sqrt{3}$),求它的中位线长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在四棱锥P-ABCD中,PA⊥面ABCD,AB⊥BC,AD⊥DC,AC=2BC=2DC=2,3BM=BP.
(1)求证:CM∥平面PAD.
(2)若CM与平面PAC所成的角的正弦值为$\frac{\sqrt{5}}{5}$,求AP的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知a,b∈R+,且ab=9,则a+b的最小值为(  )
A.3B.4C.6D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)过(4,0)点,且与双曲线x2-y2=2有相同的焦点.
(1)求椭圆E的标准方程;
(2)设点M(m,0)在椭圆E的长轴上,点P是椭圆上任意一点,当|$\overrightarrow{MP}}$|最小时,点P恰好落在椭圆的右顶点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=-x3+ax2+bx+c的导数f'(x)满足f'(-1)=0,f'(2)=9.
(1)求f(x)的单调区间;
(2)f(x)在区间[-2,2]上的最大值为20,求c的值.
(3)若函数f(x)的图象与x轴有三个交点,求c的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.(2x-$\sqrt{x}$)8的展开式中,二项式系数最大的项的值等于1120,则实数x的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,a=3,b=2,A=$\frac{π}{3}$,则cosB=(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{3}}}{3}$或$-\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{6}}}{3}$D.$\frac{{\sqrt{6}}}{3}$或$-\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

同步练习册答案