分析 (1)延长D1C1,在D1C1的延长线上取点E,使C1E为1,延长D1A1,在D1A1的延长线上取点Q,使A1D为$\frac{1}{3}$,连结DQ,交AA1于R,连结EQ,交A1B1于M,交B1C1于P,连结PN,MR.则D,M,N点的平面与平面BB1C1C的交线为PN,过D,M,N点的平面与平面BB1C1C的交线为MR.
(2)过D,M,N三点的平面是△DQE,且PC1=$\frac{1}{2}{D}_{1}Q$=$\frac{2}{3}$,PB1=$\frac{1}{3}$,C${\;}_{1}N={B}_{1}M=\frac{1}{2}$,由此能求出PM+PN的值.
解答
解:(1)延长D1C1,在D1C1的延长线上取点E,使C1E为1,
延长D1A1,在D1A1的延长线上取点Q,使A1D为$\frac{1}{3}$,
连结DQ,交AA1于R,
连结EQ,交A1B1于M,交B1C1于P,
连结PN,MR.
∵NC1∥DD1,∴$\frac{EN}{ED}=\frac{E{C}_{1}}{E{D}_{1}}$=$\frac{1}{2}$,
∵PC1∥QD1,∴$\frac{EP}{EQ}=\frac{E{C}_{1}}{E{D}_{1}}$=$\frac{1}{2}$,
∴PN∥DR,
∴D,R,Q,M,P,N,E共面,
又PN?平面BB1C1C,∴D,M,N点的平面与平面BB1C1C的交线为PN.
同理,由RA1∥DD1,得$\frac{QR}{QD}=\frac{Q{A}_{1}}{Q{D}_{1}}$=$\frac{1}{4}$,
由MA1∥ED1,得$\frac{QM}{QE}=\frac{Q{A}_{1}}{Q{D}_{1}}$=$\frac{1}{4}$,
∴$\frac{QR}{QD}=\frac{QM}{QE}$,∴MR∥DN,
∴D,R,Q,M,P,N,E共面,
又MR?平面AA1B1B,∴过D,M,N点的平面与平面BB1C1C的交线为MR.
(2)由(1)知过D,M,N三点的平面是△DQE,
且PC1=$\frac{1}{2}{D}_{1}Q$=$\frac{2}{3}$,PB1=$\frac{1}{3}$,C${\;}_{1}N={B}_{1}M=\frac{1}{2}$,
∴PM+PN=$\sqrt{P{{B}_{1}}^{2}+M{{B}_{1}}^{2}}$+$\sqrt{P{{C}_{1}}^{2}+{C}_{1}{N}^{2}}$=$\sqrt{\frac{13}{36}}+\sqrt{\frac{25}{36}}$=$\frac{5+\sqrt{13}}{6}$.
点评 本题考查平面与平面的交线的作法,考查线段和的求法,是中档题,解题时要认真审题,注意平面的基本性质及推论的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{6}}}{32}π{a^3}$ | B. | $\frac{{\sqrt{6}}}{8}π{a^3}$ | C. | $\sqrt{6}π{a^3}$ | D. | $\frac{{\sqrt{6}}}{3}π{a^3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{e}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com