精英家教网 > 高中数学 > 题目详情
18.如图是某几何体的三视图,则该几何体外接球的体积为(  )
A.$\frac{{\sqrt{6}}}{32}π{a^3}$B.$\frac{{\sqrt{6}}}{8}π{a^3}$C.$\sqrt{6}π{a^3}$D.$\frac{{\sqrt{6}}}{3}π{a^3}$

分析 由正四面体的棱长为a,所以此四面体一定可以放在棱长为$\frac{\sqrt{2}}{2}$a的正方体中,所以此四面体的外接球即为此正方体的外接球,由此能求出此四面体的外接球的半径,再代入体积公式计算.

解答 解:由题意,由三视图得该几何体是正四面体,棱长为a,此四面体一定可以放在正方体中,
∴我们可以在正方体中寻找此四面体.
如图所示,四面体ABCD满足题意,BC=a,
∴正方体的棱长为$\frac{\sqrt{2}}{2}$a,
∴此四面体的外接球即为此正方体的外接球,
∵外接球的直径=正方体的对角线长,
∴外接球的半径为R=$\frac{\sqrt{6}}{4}$a,
∴该几何体外接球的体积为V=$\frac{4}{3}$πR3=$\frac{\sqrt{6}}{8}$πa3
故选:B.

点评 本题考查了由三视图求几何体的体积,关键是对几何体正确还原,并根据三视图的长度求出几何体的几何元素的长度,还需要求出外接球的半径,进而求出它的体积,考查了空间想象能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知△ABC三边均不相等,且$\frac{cosA}{cosB}$=$\frac{b}{a}$,则角C的大小为90°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知ABCD-A1B1C1D1是平行六面体,设M是底面ABCD中AC与BD的交点,N是侧面BCC1B1对角线BC1上的点,且$\overrightarrow{BN}$=$\frac{1}{3}$$\overrightarrow{N{C}_{1}}$,设$\overrightarrow{MN}$=α$\overrightarrow{AB}$+β$\overrightarrow{AD}$+γ$\overrightarrow{A{A}_{1}}$,则α、β、γ的值分别为-$\frac{1}{2}$,$\frac{3}{4}$,$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.一个正四棱柱的顶点均在半径为1的球面上,当正四棱柱的侧面积取得最大值时,正四棱柱的底面边长为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若一个球的体积是$\frac{256π}{3}$,则该球的内接正方体的表面积是128.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.化简cos2α+sin2αcos2α+sin4α=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在三棱锥P-ABC中,PA=BC=4,PB=AC=5,$PC=AB=\sqrt{11}$,则三棱锥P-ABC的外接球的表面积为26π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{lnx}{x}$-mx(m∈R).
(Ⅰ)当m=0时,求函数f(x)的零点个数;
(Ⅱ)当m≥0时,求证:函数f(x)有且只有一个极值点;
(Ⅲ)当b>a>0时,总有$\frac{f(b)-f(a)}{b-a}$>1成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在棱长为1的正方体ABCD-A1B1C1D1中,M,N分别为A1B1,C1C的中点.
(1)画出过D,M,N点的平面与平面BB1C1C及与平面AA1B1B的交线;
(2)设过D,M,N三点的平面与B1C1交于P,求PM+PN的值.

查看答案和解析>>

同步练习册答案