分析 已知等式右边利用正弦定理化简,整理后再利用二倍角的正弦函数公式化简,得到2A与2B相等或互补,进而求出C的度数.
解答 解:由正弦定理$\frac{a}{sinA}=\frac{b}{sinB}$,得到$\frac{b}{a}=\frac{sinB}{sinA}$,
代入已知等式得:$\frac{cosA}{cosB}=\frac{sinB}{sinA}$,即sinAcosA=sinBcosB,
整理得:$\frac{1}{2}$sin2A=$\frac{1}{2}$sin2B,即sin2A=sin2B,
∴2A=2B(此三角形为不等边三角形,舍去)或2A+2B=180°,
∴A+B=90°,
则C=90°.
故答案为:90°.
点评 此题考查了正弦定理,二倍角的正弦函数公式,熟练掌握正弦定理是解本题的关键,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-1)∪(0,1) | B. | (-1,0)∪(1,+∞) | C. | (-∞,-1)∪(1,+∞) | D. | (-1,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | 4 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{6}}}{32}π{a^3}$ | B. | $\frac{{\sqrt{6}}}{8}π{a^3}$ | C. | $\sqrt{6}π{a^3}$ | D. | $\frac{{\sqrt{6}}}{3}π{a^3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com