精英家教网 > 高中数学 > 题目详情
20.若实数x,y满足$\left\{\begin{array}{l}{x≤2}\\{y≤2}\\{x+y≥1}\end{array}\right.$,则S=2x+y-1的最大值为(  )
A.5B.4C.3D.2

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,求最大值.

解答 解:作出不等式组对应的平面区域如图:(阴影部分).
由S=2x+y-1得y=-2x+S+1
平移直线y=-2x+S+1,
由图象可知当直线y=-2x+S+1经过点A时,直线y=-2x+S+1的截距最大,
此时z最大.
由$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$,即A(2,2),
代入目标函数S=2x+y-1得z=2×2+2-1=5.
即目标函数S=2x+y-1的最大值为5.
故选:A.

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.半径为π cm,中心角为120°的弧长为(  )
A.$\frac{π}{3}$cmB.$\frac{π^2}{3}$cmC.$\frac{2π}{3}$cmD.$\frac{{2{π^2}}}{3}$cm

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知A,B,C是抛物线y2=4x上不同的三点,且AB∥y轴,∠ACB=90°,点C在AB边上的射影为D,则|AD|•|BD|=(  )
A.16B.8C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某校老年、中年和青年教师的人数见如表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为180.
类别老年教师中年教师青年教师合计
人数900180016004300

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.数列{an}满足Sn=2an-1(n∈N*),其中Sn是{an}的前n项和,则a10=512.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.统计甲、乙两名运动员9场比赛得分情况得到茎叶图如图所示,设甲、乙得分平均数分别为$\overline{x}$,$\overline{y}$,中位数分别为m,n,则下列判断正确的是(  )
A.$\overline{x}$<$\overline{y}$,m<nB.$\overline{x}$>$\overline{y}$,m<nC.$\overline{x}$>$\overline{y}$,m>nD.$\overline{x}$<$\overline{y}$,m>n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知△ABC三边均不相等,且$\frac{cosA}{cosB}$=$\frac{b}{a}$,则角C的大小为90°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为$\frac{1}{7}$.现在甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取…,取后不放回,直到两人中有一人取到白球为止,每个球在每一次被取出的机会是相等的,用ξ表示终止时所需要的取球次数.
(1)求袋中原有白球的个数;
(2)求随机变量ξ的概率分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.一个正四棱柱的顶点均在半径为1的球面上,当正四棱柱的侧面积取得最大值时,正四棱柱的底面边长为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}$C.$\frac{1}{2}$D.1

查看答案和解析>>

同步练习册答案