精英家教网 > 高中数学 > 题目详情
已知奇函数f(x)=log2(a+x)-log2(a-x)(a>0),定义域为(b,b+2)(定义域是指使表达式有意义的实数x的集合).
(1)求实数a和b的值,并证明函数f(x)在其定义域上是增函数;
(2)设f(x)的反函数为f-1(x),若不等式f-1(x)≤m•2x对于x∈[1,2]恒成立,求实数m的取值范围.
【答案】分析:(1)先利用奇函数的定义域关于原点对称求出b的值,再根据f(x)为奇函数,有f(-x)=-f(x),由此等式解出a的值,最后利用单调性的定义说明不函数f(x)在其定义域上是增函数;
(2)根据反函数的定义求出原函数的反函数f-1(x)═,再由f-1(x)≤m•2x,此式对于x∈[1,2]恒成立,再利用换元结合基本不等式得到有最大值为,从而求出实数m的取值范围.
解答:解:(1)∵奇函数的定义域关于原点对称,∴b+b+2=0⇒b=-1,∴定义域为(-1,1),
从而(a>0)的解集为(-1,1),∴a=1,

设-1<x1<x2<1,
由-1<x1<x2<1⇒0<1+x1<1+x2且0<1-x2<1-x1
,即f(x1)<f(x2),
∴函数f(x)在其定义域上是增函数
(2)令f(x)=y,则⇒2y-x•2y=1+x⇒(y∈R),
∴反函数f-1(x)═,由f-1(x)≤m•2x,整理得,此式对于x∈[1,2]恒成立,令2x-1=t,则t∈[1,3],
,即∈[1,3]时上式成立等号,即有最大值为

点评:本小题主要考查函数单调性、函数奇偶性的应用、函数恒成立问题等基础知识,考查运算求解能力、化归与转化思想.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知奇函数f(x)为R上的减函数,则关于a的不等式f(a2)+f(2a)>0的解集是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知f(x)=lg
1-x1+x
,判断f(x)的奇偶性
(2)已知奇函数f(x)的定义域为R,x∈(-∞,0)时,f(x)=-x2-x-1,求f(x)解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

下面四个命题:
①已知函数f(x)=
x
 ,x≥0 
-x
 ,x<0 
且f(a)+f(4)=4,那么a=-4;
②一组数据18,21,19,a,22的平均数是20,那么这组数据的方差是2;
③要得到函数y=sin(2x+
π
3
)
的图象,只要将y=sin2x的图象向左平移
π
3
单位;
④已知奇函数f(x)在(0,+∞)为增函数,且f(-1)=0,则不等式f(x)<0的解集{x|x<-1}.
其中正确的是

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)的定义域为R,且f(x)是以2为周期的周期函数,数列{an}是首项为1,公差为1的等差数列,则f(a1)+f(a2)+…+f(a2008)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)满足f(x)=-f(x+2),当x∈[0,1]时,f(x)=x,若af2(x)+bf(x)+c=0在x∈[0,6]上恰有5个根,且记为xi(i=1,2,3,4,5),则x1+x2+x3+x4+x5=
 

查看答案和解析>>

同步练习册答案