精英家教网 > 高中数学 > 题目详情
已知奇函数f(x)的定义域为R,且f(x)是以2为周期的周期函数,数列{an}是首项为1,公差为1的等差数列,则f(a1)+f(a2)+…+f(a2008)的值为(  )
分析:分析知数列为以1为首项,1为公差的整数列,即给出了函数的定义域是非零的自然数,这是一个离散函数,且以2为周期,又是奇函数,根据这些性质建立方程求出函数的前二个值即可.
解答:解:∵奇函数f(x)的定义域为R,
∴f(0)=0,f(1)+f(-1)=0,
又f(x)是以2为周期的周期函数,
∴f(2)=f(0)=0,f(1)=f(-1),
∴f(1)=0,
则f(a1)+f(a2)+…+f(a2008)的值为0.
应选A.
点评:此题考查了考查函数的性质奇偶性与周期性,等差数列的特征,知识覆盖面广,技能性较强.熟练掌握等差数列的性质是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知奇函数f(x)的定义域是R,且f(x)=f(1-x),当0≤x≤
12
时,f(x)=x-x2
(1)求证:f(x)是周期函数;
(2)求f(x)在区间[1,2]上的解析式;
(3)求方程f(x)=log10000x的根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(-x)的定义域为[-1,0)∪(0,1],其图象是两条直线的一部分(如图所示),则不等式f(x)-f(-x)>-1的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)的定义域为[-1,1],当x∈[-1,0)时,f(x)=-(
1
2
)
x

(1)求函数f(x)在[0,1]上的值域;
(2)若x∈(0,1],
1
4
f2(x)-
λ
2
f(x)+1的最小值为-2,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知函数f(x)是R上的奇函数,且当x>0时,f(x)=x2-2x-3,求f(x)的解析式.
(2)已知奇函数f(x)的定义域为[-3,3],且在区间[-3,0]内递增,求满足f(2m-1)+f(m2-2)<0的实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)设a>0,f(x)=
ex
a
+
a
ex
是R上的偶函数,求实数a的值;
(2)已知奇函数f(x)的定义域为[-2,2],且在区间[-2,0]内递减,求满足f(1-m)+f(1-m2)<0的实数m的取值范围.

查看答案和解析>>

同步练习册答案