精英家教网 > 高中数学 > 题目详情
已知奇函数f(-x)的定义域为[-1,0)∪(0,1],其图象是两条直线的一部分(如图所示),则不等式f(x)-f(-x)>-1的解集为(  )
分析:利用函数的图象求出函数的解析式,进而解出不等式即可.
解答:解:∵奇函数f(-x)的定义域为[-1,0)∪(0,1],∴函数f(x)的定义域也为[-1,0)∪(0,1].
由图象可得f(x)=
-x+1,当0<x≤1时
-x-1,当-1≤x<0时

不等式f(x)-f(-x)>-1可化为f(x)>-
1
2

①当0<x≤1时,f(x)≥f(1)=0,满足f(x)>-
1
2
,此时不等式的解集为(0,1];
②当-1≤x<0时,由f(x)=-x-1>-
1
2
,解得x<-
1
2
,因此-1≤x<-
1
2

综上可知:不等式f(x)-f(-x)>-1的解集是{x|-1≤x<-
1
2
,或0<x≤1}.
故选B.
点评:由函数的图象求出函数的解析式是解题的关键.熟练掌握数形结合的思想方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知奇函数f(x)为R上的减函数,则关于a的不等式f(a2)+f(2a)>0的解集是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知f(x)=lg
1-x1+x
,判断f(x)的奇偶性
(2)已知奇函数f(x)的定义域为R,x∈(-∞,0)时,f(x)=-x2-x-1,求f(x)解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

下面四个命题:
①已知函数f(x)=
x
 ,x≥0 
-x
 ,x<0 
且f(a)+f(4)=4,那么a=-4;
②一组数据18,21,19,a,22的平均数是20,那么这组数据的方差是2;
③要得到函数y=sin(2x+
π
3
)
的图象,只要将y=sin2x的图象向左平移
π
3
单位;
④已知奇函数f(x)在(0,+∞)为增函数,且f(-1)=0,则不等式f(x)<0的解集{x|x<-1}.
其中正确的是

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)的定义域为R,且f(x)是以2为周期的周期函数,数列{an}是首项为1,公差为1的等差数列,则f(a1)+f(a2)+…+f(a2008)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)满足f(x)=-f(x+2),当x∈[0,1]时,f(x)=x,若af2(x)+bf(x)+c=0在x∈[0,6]上恰有5个根,且记为xi(i=1,2,3,4,5),则x1+x2+x3+x4+x5=
 

查看答案和解析>>

同步练习册答案