精英家教网 > 高中数学 > 题目详情
设n为正整数,规定:,已知
(1)解不等式:f(x)≤x;
(2)设集合A={0,1,2},对任意x∈A,证明:f3(x)=x;
(3)探求
(4)若集合B={x|f12(x)=x,x∈[0,2]},证明:B中至少包含有8个元素.
【答案】分析:(1)因为是分段函数,所以先根据定义域选择解析式来构造不等式,当0≤x≤1时,由2(1-x)≤x求解;当1<x≤2时,由x-1≤x求解,取后两个结果取并集.
(2)先求得f(0),f(1),f(2),再分别求得f(f(0)),f(f(f(0)));f(f(1)),f(f(f(1)));f(f(f(2))).再观察与自变量是否相等即可.
(3)看问题有2008重求值,一定用到周期性,所以先求出 ,观察是以4为周期,有 (k,r∈N)求解
(4)由(1)可得∈B、由(2)可得0、1、2∈B、由(3)可得∈B,进而可证得结论.
解答:解:(1)①当0≤x≤1时,由2(1-x)≤x得,x≥
≤x≤1.
②当1<x≤2时,因x-1≤x恒成立.
∴1<x≤2.
由①,②得,f(x)≤x的解集为{x|≤x≤2}.
(2)∵f(0)=2,f(1)=0,f(2)=1,
∴当x=0时,f3(0)=f(f(f(0)))=f(-f(2))=f(1)=0;
当x=1时,f3(1)=f(f(f(1)))=f(f(0))=f(2)=1;
当x=2时,f3(2)=f(f(f(2)))=f(f(1))=f(0)=2.
即对任意x∈A,恒有f3(x)=x.
(3)



一般地,(k,r∈N).

(4)由(1)知,f()=,∴fn)=,则f12)=,∴∈B.
由(2)知,对x=0、1、2,恒有f3(x)=x,∴f12(x)=x,则0、1、2∈B.
由(3)知,对x=,恒有f12(x)=x,∴∈B.
综上所述、0、1、2、∈B.
∴B中至少含有8个元素.
点评:本题考查的知识点是分段函数及分段不等式的解法,元素与集合关系的判定,函数的周期性,函数恒成立问题,分段函数问题要注意分类讨论,还考查了分段函数多重求值,要注意从内到外,根据自变量取值选择好解析式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设n为正整数,规定:fn(x)=
f{f[…f(x)…]}
n个f
,已知f(x)=
2(1-x)(0≤x≤1)
x-1(1<x≤2)

(1)解不等式:f(x)≤x;
(2)设集合A={0,1,2},对任意x∈A,证明:f3(x)=x;
(3)求f2008(
8
9
)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•惠州模拟)设n为正整数,规定:fn(x)=
f{f[…f(x)]}
n个f
,已知f(x)=
2(1-x),0≤x≤1
x-1,1<x≤2

(1)解不等式f(x)≤x;
(2)设集合A={0,1,2},对任意x∈A,证明:f3(x)=x;
(3)求f2007(
8
9
)
的值;
(4)若集合B={x|f12(x)=x,x∈[0,2]},证明:B中至少包含8个元素.

查看答案和解析>>

科目:高中数学 来源: 题型:

设n为正整数,规定:fn(x)=
f{f[…f(x)…]}
n个f
,已知f(x)=
2(1-x)
x-1
(0≤x≤1)
(1<x≤2)

(1)解不等式:f(x)≤x;
(2)设集合A={0,1,2},对任意x∈A,证明:f3(x)=x;
(3)探求f2009(
8
9
)

(4)若集合B={x|f12(x)=x,x∈[0,2]},证明:B中至少包含有8个元素.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

  设n为正整数,规定:fn(x)=,已知f(x)= .

(1)解不等式f(x)≤x

(2)设集合A={0,1,2},对任意xA,证明f3(x)=x

(3)求f2007()的值;

(4)(理)若集合B=,证明B中至少包含8个元素.

查看答案和解析>>

同步练习册答案