(本小题满分12分)
设n为正整数,规定:fn(x)=,已知f(x)= .
(1)解不等式f(x)≤x;
(2)设集合A={0,1,2},对任意x∈A,证明f3(x)=x;
(3)求f2007()的值;
(4)(理)若集合B=,证明B中至少包含8个元素.
{x|≤x≤2}.
22.解:(1)①当0≤x≤1时,由2(1-x)≤x 得x≥.∴≤x≤1.
②当1<x≤2时,因x-1≤x 恒成立.∴1<x≤2.
由①②得f(x)≤x 的解集为{x|≤x≤2}. 3分
(2)∵f(0)=2,f(1)=0,f(2)=1,
∴当x=0时,f3(0)=f(f(f(0)))=f(f(2))=f(1)=0;
当 x=1时,f3(1)=f(f(f(1)))=f(f(0))=f(2)=1;
当x=2时,f3(2)=f(f(f(2)))=f(f(1))=f(0)=2.
即对任意x∈A,恒有f3(x)=x. 6分 (8分)
(3)f1()=2(1-)=,f2()=f(f())=f()=,f3()=f(f2())=f()=-1=,f4()=f(f3())=f()=2(1-)=,
一般地,f4k+r()=fr() (k,r∈ N*) ∴ f2007()=f3() = 9分 (12分)
(4)(理)由(1)知,f()=,∴fn()=.则f12()=.∴∈B .
由(2)知,对x=0,或1,或2,恒有f3(x)=x,∴f12(x)=f4×3(x)=x.则0,1,2∈B.
由(3)知,对x=,,,,恒有f12(x)=f4×3(x)=x,∴,,,∈B.
综上所述,,0,1,2, ,,,∈B. ∴B中至少含有8个元素. 12分
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com