精英家教网 > 高中数学 > 题目详情
(2006•广州一模)已知数列{xn}满足下列条件:x1=a,x2=b,xn+1-(λ+1)xn+λxn-1=0(n∈N*且n≥2),其中a、b为常数,且a<b,λ为非零常数.
(Ⅰ)当λ>0时,证明:xn+1>xn(n∈N*);
(Ⅱ)当|λ|<1时,求
limn→∞
xn
分析:(Ⅰ)由题设得xn+1-xn=λ(xn-xn-1),由x2-x1=b-a>0,知:数列{xn+1-xn}是首项为b-a,公比为λ的等比数列,由此能够证明xn+1>xn(n∈N*).
(Ⅱ)由xn+1-λxn=xn-λxn-1=…=x2-λx1=b-λa及xn+1>xn(n∈N*),知xn=
b-λa-(b-a)•λn-1
1-λ
,由|λ|<1,知
lim
n→∞
λn-1=0
,由此能求出
lim
n→∞
xn
解答:解:(Ⅰ)证明:∵xn+1-(λ+1)xn+λxn-1=0(n∈N*且n≥2),λ为非零常数,
∴xn+1-xn=λ(xn-xn-1),
∵x1=a,x2=b,其中a、b为常数,且a<b,
∴x2-x1=b-a>0,
∴数列{xn+1-xn}是首项为b-a,公比为λ的等比数列,
xn+1-xn=(b-a)•λn-1
∵λ>0,
∴xn+1-xn>0,
即xn+1>xn(n∈N*).
(Ⅱ)∵x1=a,x2=b,xn+1-(λ+1)xn+λxn-1=0(n∈N*且n≥2),
其中a、b为常数,且a<b,λ为非零常数.
∴xn+1-λxn=xn-λxn-1=…=x2-λx1=b-λa,
即xn+1-λxn=b-λa,
∴λxn=xn+1-(b-λa),①
∵xn+1>xn(n∈N*),xn+1-xn=(b-a)•λn-1
xn=xn+1-(b-a)•λn-1,②
②-①,得(1-λ)xn=b-λa-(b-a)•λn-1
xn=
b-λa-(b-a)•λn-1
1-λ

∵|λ|<1,
lim
n→∞
λn-1=0

lim
n→∞
xn
=
lim
n→∞
b-λa-(b-a)•λn-1
1-λ
=
b-λa
1-λ
点评:本题考查数列与不等式的综合运用,考查运算求解能力,推理论证能力;考查化归与转化思想.综合性强,难度大,是高考的重点.解题时要认真审题,注意极限的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2006•广州一模)如图,长度为2的线段AB夹在直二面角α-l-β的两个半平面内,A∈α,B∈β,
且AB与平面α、β所成的角都是30°,AC⊥l,垂足为C,BD⊥l,垂足为D.
(Ⅰ)求直线AB与CD所成角的大小;
(Ⅱ)求二面角C-AB-D所成平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•广州一模)如下图,在△OAB中,|OA|=|OB|=4,点P分线段AB所成的比为3:1,以OA、OB所在直线为渐近线的双曲线M恰好经过点P,且离心率为2.
(1)求双曲线M的标准方程;
(2)若直线y=kx+m(k≠0,m≠0)与双曲线M交于不同的两点E、F,且E、F两点都在以Q(0,-3)为圆心的同一圆上,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•广州一模)函数y=f(x)是定义在R上的增函数,y=f(x)的图象经过点(0,-1)和下面下面的哪一个点时,能使不等式-1<f(x+1)<1的解集为{x|-1<x<3}(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•广州一模)已知sin
α
2
-cos
α
2
=
5
5
α∈(
π
2
,π)
tanβ=
1
2

(Ⅰ)求sinα的值;
(Ⅱ)求tan(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•广州一模)记等差数列{an}的前n项和为Sn,若a9=10,则 S17=
170
170

查看答案和解析>>

同步练习册答案