精英家教网 > 高中数学 > 题目详情

(本小题共13分)

     某公司要将一批海鲜用汽车运往A城,如果能按约定日期送到,则公司可获得销售收入30万元,每提前一天送到,或多获得1万元,每迟到一天送到,将少获得1万元,为保证海鲜新鲜,汽车只能在约定日期的前两天出发,且行驶路线只能选择公路1或公路2中的一条,运费由公司承担,其他信息如表所示.

    统计信息

汽车行驶

路线

不堵车的情况下到达所需时间(天)

堵车的情况下到达所需时间(天)

堵车的概率

运费(万元)

公路1

2

3

1.6

公路2

1

4

0.8

   (I)记汽车走公路1时公司获得的毛利润为(万元),求的分布列和数学期望

   (II)假设你是公司的决策者,你选择哪条公路运送海鲜有可能获得的毛利润更多?

(注:毛利润=销售收入-运费)

(I)分布列见解析;万元

(II)选择公路2可能获利更多


解析:

(I)汽车走公路1时不堵车时获得的毛利润万元

堵车时公司获得的毛利润万元

∴汽车走公路1时获得的毛利润的分布列为

28.4

27.4

P

万元     …………6分

(II)设汽车走公路2时获得的毛利润为万元

不堵车时获得的毛利润万元

堵车时的毛利润万元

∴汽车走公路2时获得的毛利润的分布列为

30.2

27.2

P

万元

∴选择公路2可能获利更多.             …………13分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题共13分)

已知函数

   (I)若x=1为的极值点,求a的值;

   (II)若的图象在点(1,)处的切线方程为

(i)求在区间[-2,4]上的最大值;

(ii)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源:2011届北京市丰台区高三年级第二学期统一练习理科数学 题型:解答题


(本小题共13分)
已知函数
(Ⅰ)若处取得极值,求a的值;
(Ⅱ)求函数上的最大值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年北京市高三压轴文科数学试卷(解析版) 题型:解答题

(本小题共13分)

已知向量,设函数.

(Ⅰ)求函数上的单调递增区间;

(Ⅱ)在中,分别是角的对边,为锐角,若的面积为,求边的长.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年北京市丰台区高三下学期统一练习数学理卷 题型:解答题

(本小题共13分)

某商场在店庆日进行抽奖促销活动,当日在该店消费的顾客可参加抽奖.抽奖箱中有大小完全相同的4个小球,分别标有字“生”“意”“兴”“隆”.顾客从中任意取出1个球,记下上面的字后放回箱中,再从中任取1个球,重复以上操作,最多取4次,并规定若取出“隆”字球,则停止取球.获奖规则如下:依次取到标有“生”“意”“兴”“隆”字的球为一等奖;不分顺序取到标有“生”“意”“兴”“隆”字的球,为二等奖;取到的4个球中有标有“生”“意”“兴”三个字的球为三等奖.

(Ⅰ)求分别获得一、二、三等奖的概率;

(Ⅱ)设摸球次数为,求的分布列和数学期望.

 

查看答案和解析>>

科目:高中数学 来源:北京市宣武区2010年高三第一次质量检测数学(文)试题 题型:解答题

(本小题共13分)
已知函数
(I)当a=1时,求函数的最小正周期及图象的对称轴方程式;
(II)当a=2时,在的条件下,求的值.

查看答案和解析>>

同步练习册答案