在直角坐标系xOy中,曲线C1的点均在C2:(x-5)2+y2=9外,且对C1上任意一点M,M到直线x=﹣2的距离等于该点与圆C2上点的距离的最小值.
(Ⅰ)求曲线C1的方程;
(Ⅱ)设P(x0,y0)(y0≠±3)为圆C2外一点,过P作圆C2的两条切线,分别与曲线C1相交于点A,B和C,D.证明:当P在直线x=﹣4上运动时,四点A,B,C,D的纵坐标之积为定值.
(1)![]()
(2)当P在直线
上运动时,四点A,B,C,D的纵坐标之积为定值6400
【解析】(Ⅰ)解法1 :设M的坐标为
,由已知得
,
易知圆
上的点位于直线
的右侧.于是
,所以
.
化简得曲线
的方程为
.
解法2 :由题设知,曲线
上任意一点M到圆心![]()
的距离等于它到直线
的距离,因此,曲线
是以
为焦点,直线
为准线的抛物线,故其方程为
.
(Ⅱ)当点P在直线
上运动时,P的坐标为
,又
,则过P且与圆
相切得直线的斜率
存在且不为0,每条切线都与抛物线有两个交点,切线方程为
.于是![]()
整理得
①
设过P所作的两条切线
的斜率分别为
,则
是方程①的两个实根,故
②
由
得
③
设四点A,B,C,D的纵坐标分别为
,则是方程③的两个实根,所以
④
同理可得
⑤
于是由②,④,⑤三式得
![]()
![]()
.
所以,当P在直线
上运动时,四点A,B,C,D的纵坐标之积为定值6400.
【点评】本题考查曲线与方程、直线与曲线的位置关系,考查运算能力,考查数形结合思想、函数与方程思想等数学思想方法.第一问用直接法或定义法求出曲线的方程;第二问设出切线方程,把直线与曲线方程联立,由一元二次方程根与系数的关系得到
四点纵坐标之积为定值,体现“设而不求”思想.
科目:高中数学 来源: 题型:
| x2 |
| a2 |
| y2 |
| b2 |
| 5 |
| 3 |
| MN |
| MF1 |
| MF2 |
| OA |
| OB |
查看答案和解析>>
科目:高中数学 来源: 题型:
| 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:
|
查看答案和解析>>
科目:高中数学 来源: 题型:
| x2 |
| a2 |
| y2 |
| b2 |
| ||
| 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com