分析 利用数形结合,得到函数在区间上有解的两种情况,由判别式和对称轴以及两个端点处的函数值,得到未知量m的范围.
解答 解:∵方程x2-mx+2=0在区间[1,2]上有解
∴函数f(x)=x2-mx+2在区间[1,2]上与x轴相交
①有1个交点时,满足
$\left\{\begin{array}{l}{△>0}\\{f(1)f(2)≤0}\end{array}\right.$或$\left\{\begin{array}{l}{△=0}\\{1≤\frac{m}{2}≤2}\end{array}\right.$
∴m=3或m=2$\sqrt{2}$
②有2个交点时,满足$\left\{\begin{array}{l}{△>0}\\{f(1)≥0}\\{f(2)≥0}\\{1≤\frac{m}{2}≤2}\end{array}\right.$,
∴2$\sqrt{2}$<m≤3.
综上所述,得m的取值范围是$[2\sqrt{2},3]$.
点评 本题考查利用数形结合,得到函数在区间上有解的两种情况,考查二次函数的判别式和对称轴以及两个端点处的函数值,得到未知量m的范围.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 4 | C. | 8 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a=c>b | B. | a=b>c | C. | a<b=c | D. | a=b=c |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com