精英家教网 > 高中数学 > 题目详情

已知二次函数f(x)=ax2+bx(a、b为常数,且a≠0)满足条件:f(x-1)=f(3-x),且方程f(x)=2x有等根.
(1)求f(x)的解析式;
(2)是否存在实数m、n(m<n),使f(x)定义域和值域分别为[m,n]和[4m,4n]?如果存在,求出m、n的值;如果不存在,说明理由.

(1)f(x)=-x2+2x(2)存在m=-1,n=0,满足条件

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数是定义域为的偶函数.当时,若关于的方程有且只有7个不同实数根,则的值是.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

判断下列函数的奇偶性:
(1)f(x)=x3
(2)f(x)=
(3)f(x)=(x-1)
(4)f(x)=.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=,x∈[1,+∞).
(1)当a=时,求f(x)的最小值;
(2)若对任意x∈[1,+∞),f(x)>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

V为全体平面向量构成的集合,若映射f
V→R满足:
对任意向量a=(x1y1)∈Vb=(x2y2)∈V,以及任意λ∈R,均有f[λa+(1-λ)b]=λf(a)+(1-λ)f(b),则称映射f具有性质p.
现给出如下映射:
f1V→R,f1(m)=xym=(xy)∈V;
f2V→R,f2(m)=x2ym=(xy)∈V;
f3V→R,f3(m)=xy+1,m=(xy)∈V.
分析映射①②③是否具有性质p.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义在上的函数是偶函数,且时,
(1)当时,求解析式;
(2)当,求取值的集合;
(3)当,函数的值域为,求满足的条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数f(x)=ax2bx+1(a>0),F(x)=f(-1)=0,且对任意实数x均有f(x)≥0成立.
(1)求F(x)的表达式;
(2)当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)若函数为偶函数,求的值;
(Ⅱ)若,求函数的单调递增区间;
(Ⅲ)当时,若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a,b为常数,若f(x)=x2+4x+3,f(ax+b)=x2+10x+24,求5a-b的值.

查看答案和解析>>

同步练习册答案