精英家教网 > 高中数学 > 题目详情

已知函数是定义域为的偶函数.当时,若关于的方程有且只有7个不同实数根,则的值是.

解析试题分析:首先研究函数的性质,上是减函数,在上是增函数,时,取极大值1,时,取极小值,当时,,因此方程有7个根,则方程必有两个根,其中

由此可得,所以.
考点:偶函数的性质,曲线的交点与方程的根.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数(a是常数,a∈R)
(1)当a=1时求不等式的解集.
(2)如果函数恰有两个不同的零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,曲线在点处切线方程为.
(1)求的值;
(2)讨论的单调性,并求的极小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)若,求x的范围;
(2)求的最大值以及此时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆(a>b>0)的左焦为F,右顶点为A,上顶点为B,O为坐标原点,M为椭圆上任意一点,过F,B,A三点的圆的圆心为(p,q).
(1).当p+q≤0时,求椭圆的离心率的取值范围;
(2).若D(b+1,0),在(1)的条件下,当椭圆的离心率最小时,的最小值为,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,判断的单调性,并用定义证明.
(2)若对任意,不等式 恒成立,求的取值范围;
(3)讨论零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

判断下列对应是否是从集合A到集合B的函数.
(1) A=B=N*,对应法则f:x→y=|x-3|,x∈A,y∈B;
(2) A=[0,+∞),B=R,对应法则f:x→y,这里y2=x,x∈A,y∈B;
(3) A=[1,8],B=[1,3],对应法则f:x→y,这里y3=x,x∈A,y∈B;
(4) A={(x,y)|x、y∈R},B=R,对应法则:对任意(x,y)∈A,(x,y)→z=x+3y,z∈B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=其中b>0,c∈R.当且仅当x=-2时,函数f(x)取得最小值-2.
(1)求函数f(x)的表达式;
(2)若方程f(x)=x+a(a∈R)至少有两个不相同的实数根,求a取值的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数f(x)=ax2+bx(a、b为常数,且a≠0)满足条件:f(x-1)=f(3-x),且方程f(x)=2x有等根.
(1)求f(x)的解析式;
(2)是否存在实数m、n(m<n),使f(x)定义域和值域分别为[m,n]和[4m,4n]?如果存在,求出m、n的值;如果不存在,说明理由.

查看答案和解析>>

同步练习册答案