精英家教网 > 高中数学 > 题目详情

对于在区间[m,n]上有意义的两个函数f(x)与g(x),如果对于任意,均有|f(x)-g(x)|≤1,则称f(x)与g(x)在[m,n]上是接近的.若函数y=x2-2x+3与函数y=3x-2在区间[m,n]上是接近的,给出如下区间①[1,4];②[1,3];③[1,2]∪[3,4];④.则区间[m,n]可以是________.(把你认为正确的序号都填上)

答案:③④
提示:

由题意得|f(x)-g(x)|=|x2-5x+5|,然后算它在各给定区间上的最大值,只要最大值小于或等于1就满足条件


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2006•东城区三模)对于在区间[m,n]上有意义的两个函数f(x)与g(x),如果对于任意x∈[m,n],均有|f(x)-g(x)|≤1,则称f(x)与g(x)在[m,n]上是接近的.若函数y=x2-2x+3与函数y=3x-2在区间[m,n]上是接近的,给出如下区间①[1,4]②[1,3]③[1,2]∪[3,4]④[1,
32
]∪[3,4]
,则区间[m,n]可以是
③、④
③、④
.(把你认为正确的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•江西模拟)对于在区间[m,n]上有意义的两个函数f(x)与g(x),如果对于任意的x∈[m,n],均有|f(x)-g(x)|≤1,则称f(x)与g(x)在[m,n]上是接近的,若函数f(x)=x2-2x+3与g(x)=3x-2在区间[m,n]上是接近的,给出如下区间:(1)[1,4](2)[1,2](3)[1,2]∪[3,4](4)[1,
32
]∪[3,4]
,则区间[m,n]可以是
(2)(3)(4)
(2)(3)(4)
(把你认为正确的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

对于在区间[m,n]上有意义的两个函数f(x)与g(x),如果对任意的x∈[m,n],均有|f(x)-g(x)|≤1,则称f(x)与g(x)在[m,n]上是接近的,否则称f(x)与g(x)在[m,n]上是非接近的.现有两个函数f1(x)=loga(x-2a)与f2(x)=loga
1x-a
,(a>0,且a≠1),给定区间[a+1,a+2]
(1)若f1(x)与f2(x)在区间[a+1,a+2]上都有意义,求a的取值范围;
(2)在(1)的条件下,讨论f1(x)与f2(x)在区间[a+1,a+2]上是否是接近的.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分13分)对于在区间[mn]上有意义的两个函数,如果对任意[mn]均有,称在[mn]上是接近的,否则称在[mn]上是非接近的,现有两个函数a>0,a≠1),给定区间[a+2,a+3].(1)若在给定区间[a+2,a+3]上都有意义,求a的取值范围;(2)讨论在[a+2,a+3]上是否是接近的.

查看答案和解析>>

科目:高中数学 来源:2014届安徽省高二下学期期末考试数学试卷(解析版) 题型:解答题

对于在区间 [ m,n ] 上有意义的两个函数,如果对任意,均有,则称在 [ m,n ] 上是友好的,否则称在 [ m,n ]是不友好的.现有两个函数(a > 0且),给定区间

(1)若在给定区间上都有意义,求a的取值范围;

(2)讨论在给定区间上是否友好.

 

查看答案和解析>>

同步练习册答案