精英家教网 > 高中数学 > 题目详情
已知二次函数(t∈R)有最大值且最大值为正实数,集合,集合B={x|x2<b2}。
(1)求A和B;
(2)定义A与B的差集:A-B={x|x∈A且xB},P(E)为x取自A-B的概率,P(F)为x取自A∩B的概率,解答下面问题:
①当a=-3,b=2时,求P(E),P(F)的值;
②设a,b,x均为整数时,写出a与b的三组值,使P(E)=,P(F)=
解:(1)∵有最大值,
∴a<0,
配方,得


(2)①
②要使
可以使(1)A中有3个元素,A-B中有2个元素,A∩B中有1个元素,则a=-4,b=2;
(2)A中有6个元素,A-B中有4个元素,A∩B中有2个元素,则a=-7,b=3;
(3)A中有9个元素,A-B中有6个元素,A∩B中有3个元素,则a=-10,b=4。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)的图象过点(0,4),对任意x满足f(3-x)=f(x),且有最小值是
74
.g(x)=2x+m.
(Ⅰ)求f(x)的解析式;
(Ⅱ) 求函数h(x)=f(x)-(2t-3)x在区间[0,1]上的最小值,其中t∈R;
(Ⅲ)设f(x)与g(x)是定义在同一区间[p,q]上的两个函数,若函数F(x)=f(x)-g(x)在x∈[p,q]上有两个不同的零点,则称f(x)和g(x)在[p,q]上是“关联函数”,区间[p,q]称为“关联区间”.若f(x)与g(x)在[0,3]上是“关联函数”,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•成都模拟)已知二次函数f(x)=ax2+bx+c(a,b,c∈R),当x∈(-∞,-2)∪(0,+∞)时,f(x)>0,当x∈(-2,0)时,f(x)<0,且对任意x∈R,不等式f(x)≥(a-1)x-1恒成立.
(I)求函数f(x)的解析式;
(II)设函数F(x)=tf(x)-x-3,其中t≥0,求F(x)在x∈[-
32
,2]
时的最大值H(t);
(III)在(II)的条件下,若关于的函数y=log2[p-H(t)]的图象与直线y=0无公共点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•无为县模拟)已知二次函数y=f(x)(z∈R)的图象过点(0,-3),且f(x)>0的解集(1,3).
(1)求f(x)的解析式;
(2)若当x>0时,恒有f(x)≤tx,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx(a、b为常数且a≠0)满足条件:f(-x+5)=f(x-3),且方程f(x)=x有等根.
(1)求f(x)的解析式;
(2)函数f(x)在(x∈[t,t+1],t∈R)的最大值为u(t),求u(t)解析式.

查看答案和解析>>

同步练习册答案