【题目】第三届移动互联创新大赛,于2017年3月~10月期间举行,为了选出优秀选手,某高校先在计算机科学系选出一种子选手
,再从全校征集出3位志愿者分别与
进行一场技术对抗赛,根据以往经验,
与这三位志愿者进行比赛一场获胜的概率分别为
,且各场输赢互不影响.
(1)求甲恰好获胜两场的概率;
(2)求甲获胜场数的分布列与数学期望.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线
的极坐标方程为
,以极点为平面直角坐标系的原点,极轴为
的正半轴,建立平面直角坐标系
.
(1)若曲线
为参数)与曲线
相交于两点
,求
;
(2)若
是曲线
上的动点,且点
的直角坐标为
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地随着经济的发展,居民收入逐年增长.该地一建设银行统计连续五年的储蓄存款(年底余额)得到下表:
年份 |
|
|
|
|
|
储蓄存款 (千亿元) |
|
|
|
|
|
为便于计算,工作人员将上表的数据进行了处理(令
,
),得到下表:
时间 |
|
|
|
|
|
储蓄存款 |
|
|
|
|
|
(Ⅰ)求
关于
的线性回归方程;
(Ⅱ)通过(Ⅰ)中的方程,求出
关于
的回归方程;
(Ⅲ)用所求回归方程预测到
年年底,该地储蓄存款额可达多少?
附:线性回归方程
,其中
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有
六支足球队参加单循环比赛(即任意两支球队只踢一场比赛),第一周的比赛中
,各踢了
场,
各踢了
场,
踢了
场,且
队与
队未踢过,
队与
队也未踢过,则在第一周的比赛中,
队踢的比赛的场数是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com