精英家教网 > 高中数学 > 题目详情
(2009•大连二模)如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,E、F分别为线段AB、D1C的中点.
(I)求证:EF∥平面A1D;
(II)求V E-ADD1A1VE-CDD1的值.
分析:(Ⅰ)取DD1的中点G,连结FG、AG,证明四边形AEFG为平行四边形,利用直线与平面平行的判定定理证明EF∥平面A1D;
(II)通过体积公式直接求V E-ADD1A1VE-CDD1的体积然后求解比值.
解答:证明:(Ⅰ)取DD1的中点G,连结FG、AG,
依题意可知:GF是△CDD1的中位线,
则  GF∥
1
2
DC
且GF=
1
2
DC

AE∥
1
2
DC
 且AE=
1
2
DC

所以GF∥AE,且GF=AE,即四边形AEFG为平行四边形,…(3分)
则EF∥AG,又AG?平面AD1,EF?平面AD1
所以EF∥平面AD1.…(6分)
(Ⅱ)解:E-ADD1A1=
1
3
S
ADD1A1
×AE=
1
3
SABCD×AE
=
1
3
×1×1×1
=
1
3

VE-CDD1=
1
3
S
CDD1
×AD
=
1
3
×
1
2
×1×2×1
=
1
3

E-ADD1A1:VE-CDD1=1
∴V E-ADD1A1VE-CDD1的值为1.…(12分)
点评:本题考查直线与平面平行的判定定理的应用,几何体是体积的求法,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•大连二模)已知复数z=(1+i)2+i2009,则复数z的虚部是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•大连二模)α、β为两个互相平行的平面,a、b为两条不重合的直线,下列条件:
①a∥α,b?β;
②a⊥α,b∥β
③a⊥α,b⊥β
④a∥α,b∥β.
其中是a∥b的充分条件的为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•大连二模)已知x0为函数f(x)=(
1
5
x-log2x的零点,若0<x1<x0,则f(x1)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•大连二模)如图所示,若向圆x2+y2=2内随机投一点(该点落在圆x2+y2=2内任何一点是等可能的),则所投的点落在圆与y轴及曲线y=x2(x≥0)围成的阴影图形S内部的概率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•大连二模)(
1
2
x+
1
2
8=a0+a 1x+a2x2+…a7x7+a8x8,其中ak(k=0,1,2,…,7,8)都是常数,则a1+2a2+3a3+…+7a7+8a8的值为(  )

查看答案和解析>>

同步练习册答案